簡易檢索 / 詳目顯示

研究生: 王凱玄
論文名稱: 靜止期和生長期的纖維母細胞經由5-MTP的調控建構了不同的p300 HAT的活性
Quiescent and Proliferative Fibroblasts Exhibit Differential p300 HAT Activation through Control of 5-Methoxytryptophan Production
指導教授: 伍焜玉
口試委員: 林秀芳
劉俊揚
郭呈欽
彭明德
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 靜止期纖維母細胞增殖期纖維母細胞p300組蛋白乙酰轉移酶5-甲氧基色胺酸環氧酵素-2
外文關鍵詞: Quiescent fibroblast, Proliferative fibroblast, p300 HAT, 5-MTP, COX-2
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜止期纖維母細胞(quiescent fibroblast;SF-Fb)具有特定的基因表現,並與增殖期纖維母細胞(proliferative fibroblast;pFb)擁有不同的代謝活性。先前的研究指出,對於免疫反應的刺激,SF-Fb在表達環氧酵素-2 (Cyclooxygenase-2;COX-2)以及其它發炎基因的表現量會比pFb的表現量更多。此相關的轉錄機制尚不清楚。在本研究中,我們發現SF-Fb會比pFb表現出更大量的促發炎基因,原因為兩者的p300組蛋白乙酰轉移酶(Histone acetyltransferase;HAT)有不同程度的活性。當SF-Fb利用佛波醇-12-十四烷酸酯-13-乙酸酯 (Phorbol 12-myristate 13-acetate;PMA)和細胞激素刺激後會使pFb有較高的p300 HAT活性(> 2倍)。實驗室先前的研究發現pFb中的5-甲氧基色胺酸(5-methoxytryptophan;5-MTP) 是控制COX-2轉錄的關鍵因子,因此我們推測,當細胞中5-MTP 的量下降, 會使Fb表現出更大量的p300 HAT活性,進而導致COX-2表現量上升。利用超高性能液相色譜外加四極棒暨飛行時間串聯式質譜儀(ultrahigh-performance liquid chromatography coupled with a quardrupole time of flight mass spectrometer) 以及酵素免疫分析 (enzyme immunoassay;EIA)進行5-MTP的測量, 結果顯示pFb的5-MTP的產量是SF-Fb 的2-3倍。而在SF-Fb中外加5-MTP則可降低PMA所促進的p300 HAT活性和COX -2的表現。此外我們將色胺酸代謝中的酵素:第一色胺酸氫氧基化酶(Tryptophan hydroxylase-1;TPH-1)或5-羥氧吲哚-O-甲基轉移酶(Hydroxyindole O-methyltransferase;HIOMT) 的小干擾核糖核酸 (Small interfering RNA;siRNA) 送入pFb中,結果發現以siRNA干擾的pFb一旦受到PMA刺激,其p300 HAT活性會大量升高,甚至與SF-Fb相同,而受到siRNA影響的pFb外加5-MTP後,其p300 HAT的活性會降到與未處理過的pFb相似。在色胺酸的代謝過程中,5-羥基色胺酸(5-hydroxytryptophan;5-HTP)是藉由HIOMT轉化成為5-MTP。在實驗中發現5-HTP會影響p300 HAT活性。在SF-Fb中外加5-HTP可抑制p300 HAT活性和COX- 2的表現。從以上的實驗結果證明,由於 SF-Fb中的5-MTP表現量不足,使得p300 HAT活性不受控制,進而影響許多免疫反應的基因表現。


    Quiescent fibroblasts (SF-Fb) feature unique genetic program and exhibit high metabolic activity different from proliferative fibroblasts (pFb). We recently reported that in response to inflammatory stimulation, SF-Fb is more active in expressing cyclooxygenase-2 (COX-2) and other proinflammatory genes than pFb. The underlying transcriptional mechanism is unclear. Here we show that more robust proinflammatory gene expression in SF-Fb vs. pFb is attributed to differential activation of p300 histone acetyltransferase (HAT). Phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 HAT activity to a higher magnitude (> 2 fold) in SF-Fb than in pFb. 5-methoxytryptophan production was recently reported to be pivotal in controlling COX-2 transcription in pFb. We determined whether more robust p300 HAT activation in SF-Fb vs. pFb may be due to underproduction of 5-methoxytryptophan (5-MTP). 5-MTP production was analyzed by ultrahigh-performance liquid chromatography coupled with a quardrupole time of flight mass spectrometer and enzyme-immunoassay. 5-MTP produced by pFb was 2-3 fold higher than that by SF-Fb. Addition of 5-MTP to SF-Fb reduced PMA-induced p300 HAT activity and COX-2 expression to the level of pFb. Silencing of 5-MTP synthetic enzymes, tryptophan hydroxylase-1 (TPH-1) or hydroxyindole O-methyltransferase (HIOMT) in pFb with siRNA transfection resulted in elevation of PMA-induced p300 HAT activity to the level in SF-Fb, which was rescued by addition of 5-MTP. 5-hydroxytryptophan (5-HTP) is an intermediate metabolite in 5-MTP production. We determined whether 5-HTP influences p300 HAT activation. Addition of 5-HTP resulted in suppression of p300 HAT activation and COX-2 expression. Our findings indicate that robust inflammatory gene expressions in SF-Fb vs. pFb are attributed to uncontrolled p300 HAT activation due to deficiency of 5-MTP production.

    Abstract I 中文摘要 III Abbreviations V Introduction 1 Quiescent Fibroblast 1 Cyclooxygenase-2 2 p300 4 5-Methoxytryptophan 6 Hypothesis 8 Experimental Procedures 9 Plasmids 9 Chemical reagents 9 Cell culture 9 Analysis of COX-2 promoter activity 10 Streptavidin-agarose pulldown (SAP) assay 11 Western blot analysis 12 Chromatin immunoprecipitation (ChIP) assay 13 Real-Time Quantitative PCR 14 Analysis of HAT activity 15 Transient p300 transfection 16 5-MTP enzyme immunoassay (EIA) 16 Metabolomic analysis 17 Small interfering RNA (siRNA) transfection 19 Statistical Analysis 19 Results 20 Control of COX-2 expression in proliferative fibroblasts is attributable to suppression of p300 20 Deletion of p300 HAT domain abrogated amplification of COX-2 promoter activation 21 p300 HAT activation in pFb and SF-Fb by proinflammatory cytokines 22 Soluble factors production is pivotal in p300 HAT inhibition in proliferative fibroblasts 24 Defective control of p300 HAT in SF-Fb is corrected by 5-MTP and 5-HTP 25 Suppression of SF-Fb p300 HAT activation by 5-HTP 26 5-MTP inhibits PMA-induced p300 HAT activation 27 Discussion 28 Reference 35 Figures and Figure Legends 43 Figure 1. Declined binding of transactivators to COX-2 promoter in p-Fb vs. SF-Fb. 43 Figure 2. p300 HAT deletion mutant abrogates augmentation of PMA-induced COX-2 transcriptional activation. 48 Figure 3. Depressed p300 HAT activation in pFb vs. SF-FB. 51 Figure 4. Time dependent reduction of PMA-induced p300 HAT activity in quiescent fibroblasts replenished with serum. 54 Figure 5. Control of P300 HAT activity in SF-Fb by conditioned medium (CM) 57 Figure 6. p300 HAT suppression in pFb is reversed by silencing of 5-MTP synthetic enzymes. 58 Figure 7. Deficient 5-MTP production in SF-Fb. 61 Figure 8. Deficient 5-MTP production in SF-Fb. 64 Figure 9. 5-HTP generate 5-MTP in SF-Fb. 65 Figure 10. 5-HTP inhibits p300 HAT activation and COX-2 expression. 66 Figure 11. Inhibition of p300 HAT activation by 5-MTP. 68

    1. Fuge EK, Braun EL, Wernerwashburne M (1994) Protein-Synthesis in Long-Term Stationary-Phase Cultures of Saccharomyces-Cerevisiae. Journal of Bacteriology 176: 5802-5813.
    2. Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57: 383-401.
    3. Naderi J, Hung M, Pandey S (2003) Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: resistance of quiescent cells to oxidative stress. Apoptosis 8: 91-100.
    4. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, et al. (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8: e1000514.
    5. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4: e83.
    6. Gilroy DW, Saunders MA, Sansores-Garcia L, Matijevic-Aleksic N, Wu KK (2001) Cell cycle-dependent expression of cyclooxygenase-2 in human fibroblasts. FASEB J 15: 288-290.
    7. Chen BR, Cheng HH, Lin WC, Wang KH, Liou JY, et al. (2012) Quiescent fibroblasts are more active in mounting robust inflammatory responses than proliferative fibroblasts. PLoS One 7: e49232.
    8. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: Structural, cellular, and molecular biology. Annual Review of Biochemistry 69: 145-182.
    9. Wu KK, Cheng HH, Chang TC (2014) 5-methoxyindole metabolites of L-tryptophan: control of COX-2 expression, inflammation and tumorigenesis. Journal of Biomedical Science 21.
    10. Wu KK (1995) Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol 33: 179-207.
    11. Smith WL, Marnett LJ, DeWitt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49: 153-179.
    12. Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83: 493-501.
    13. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94: 3336-3340.
    14. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, et al. (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 705-716.
    15. Trifan OC, Smith RM, Thompson BD, Hla T (1999) Overexpression of cyclooxygenase-2 induces cell cycle arrest. Evidence for a prostaglandin-independent mechanism. J Biol Chem 274: 34141-34147.
    16. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, et al. (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869-884.
    17. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114: 2363-2373.
    18. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553-1577.
    19. Giordano A, Avantaggiati ML (1999) p300 and CBP: Partners for life and death. Journal of Cellular Physiology 181: 218-230.
    20. Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18: 741-747.
    21. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, et al. (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11: 308-315.
    22. Deng WG, Zhu Y, Wu KK (2004) Role of p300 and PCAF in regulating cyclooxygenase-2 promoter activation by inflammatory mediators. Blood 103: 2135-2142.
    23. Smith JL, Freebern WJ, Collins I, De Siervi A, Montano I, et al. (2004) Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment. Proc Natl Acad Sci U S A 101: 11554-11559.
    24. Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, et al. (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14: 645-657.
    25. Schroer K, Zhu Y, Saunders MA, Deng WG, Xu XM, et al. (2002) Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 105: 2760-2765.
    26. Saunders MA, Sansores-Garcia L, Gilroy DW, Wu KK (2001) Selective suppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. J Biol Chem 276: 18897-18904.
    27. Deng WG, Zhu Y, Wu KK (2003) Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation. J Biol Chem 278: 4770-4777.
    28. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.
    29. Schaechter JD, Wurtman RJ (1990) Serotonin Release Varies with Brain Tryptophan Levels. Brain Research 532: 203-210.
    30. Ikeda M, Tsuji H, Nakamura S, Ichiyama A, Nishizuka Y, et al. (1965) Studies on the Biosynthesis of Nicotinamide Adenine Dinucleotide. Ii. A Role of Picolinic Carboxylase in the Biosynthesis of Nicotinamide Adenine Dinucleotide from Tryptophan in Mammals. J Biol Chem 240: 1395-1401.
    31. Stepanova AN, Alonso JM (2005) Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum 123: 195-206.
    32. Pevet P, Haldarmisra C, Ocal T (1981) Effect of 5-Methoxytryptophan and 5-Methoxytryptamine on the Reproductive-System of the Male Golden-Hamster. Journal of Neural Transmission 51: 303-311.
    33. Cheng HH, Kuo CC, Yan JL, Chen HL, Lin WC, et al. (2012) Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc Natl Acad Sci U S A 109: 13231-13236.
    34. Chou HC, Chan HL (2014) 5-Methoxytryptophan-dependent protection of cardiomyocytes from heart ischemia reperfusion injury. Archives of Biochemistry and Biophysics 543: 15-22.
    35. Deng WG, Zhu Y, Montero A, Wu KK (2003) Quantitative analysis of binding of transcription factor complex to biotinylated DNA probe by a streptavidin-agarose pulldown assay. Anal Biochem 323: 12-18.
    36. Wu KK (2006) Analysis of protein-DNA binding by streptavidin-agarose pulldown. Methods Mol Biol 338: 281-290.
    37. Deng WG, Saunders MA, Gilroy DW, He XZ, Yeh H, et al. (2002) Purification and characterization of a cyclooxygenase-2 and angiogenesis suppressing factor produced by human fibroblasts. FASEB J 16: 1286-1288.
    38. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, et al. (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24: 300-303.
    39. Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23: 4225-4231.
    40. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25: 552-563.
    41. McKinsey TA, Olson EN (2004) Cardiac histone acetylation--therapeutic opportunities abound. Trends Genet 20: 206-213.
    42. Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, et al. (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118: 868-878.
    43. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278: 19134-19140.
    44. Mai A, Rotili D, Tarantino D, Ornaghi P, Tosi F, et al. (2006) Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J Med Chem 49: 6897-6907.
    45. Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276: 75-81.
    46. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, et al. (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 89: 1111-1121.
    47. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461: 1071-1078.
    48. Nikolic D, van Breemen RB (2001) DNA oxidation induced by cyclooxygenase-2. Chem Res Toxicol 14: 351-354.
    49. Tardieu D, Jaeg JP, Deloly A, Corpet DE, Cadet J, et al. (2000) The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats. Carcinogenesis 21: 973-976.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE