簡易檢索 / 詳目顯示

研究生: 劉芸瑄
Liu, Yun-Hsuan
論文名稱: 對稱雙硼基底螢光材料(tBuCzDBA)之波長相依熱活化延遲螢光動力學
On the Excitation Wavelength Dependent Fluorescence Kinetics Pathways of Thermally Activated Delayed Fluorescence of Symmetric Diboron-Based Molecule tBuCzDBA
指導教授: 朱立岡
Chu, Li-Kang
周佳駿
Chou, Chia-Chun
口試委員: 鄭建鴻
Cheng, Chien-Hong
陳益佳
Chen, I-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 熱活化延遲螢光螢光材料瞬態螢光光譜法動力學模型波長相依性
外文關鍵詞: thermally activated, kinetics models, D-A-D type materials, Wavelength Dependent
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱活化延遲螢光(thermally activated delayed fluorescence,TADF)材料,憑藉其第一單重激發態(S1)與第一三重激發態(T1)之間很小的能量差,約小於等於100 meV,使其三重態激子能發生逆向系統間跨越(reverse intersystem crossing,RISC)進而達到更高的放光量子效率。故科學家以光譜技術研究TADF材料的光激放光動力學過程,但所提及之動力學模型多為經驗式且缺乏正確定義之動力學參數。本實驗吾人將使用對稱雙硼基底結構之TADF材料tBuCzDBA,並以螢光強度時間側寫偵測系統測量其固體薄膜及其摻雜50 %w/w PMMA之固體薄膜受波長355 nm、440 nm及500 nm的脈衝雷射激發後之光激放光動力學過程。搭配密度泛函理論計算之能量輔助建立動力學模型解釋其螢光放光過程,並推測其輻射與非輻射緩解途徑的動力學和熱力學特性。
    根據tBuCzDBA理論計算結果及其穩態紫外/可見光吸收光譜,吾人推測355 nm之脈衝雷射得將其激發至S_4,而S4→S1及S4→S1'之內轉換過程需要部份時間延遲進而使其螢光上升時間較慢。而440 nm及500 nm激發則主要將其激發至S1及部分S1',伴隨後續的螢光緩解。吾人以一個四能態熱平衡之動力學模型解釋tBuCzDBA熱活化延遲螢光的動力學過程並用以擬合螢光強度時間側寫之緩解部分可獲得相關速率常數、tBuCzDBA之第一單重激發態與第一三重激發態的能量差(∆E_ST)及由S1'→S0輻射緩解放光之貢獻程度(I_S1')。擬合結果顯示,兩種tBuCzDBA的樣品受355 nm之脈衝雷射激發後的k(F)、k(ISC) 、k(RISC)及k(S1')皆較440 nm及500 nm激發為大,吾人推論係由於S4→S1及少部分S4→S1'之內轉換過程將提供多餘的能量或是發生其他非輻射緩解途徑而高估緩解速率。此外,依據分析S1'→S0輻射緩解放光之貢獻程度(I_S1')後,放光波形由S1及S1'的貢獻比例未有重大差異,故未造成激發波長相依之穩態螢光光譜的差異。此外,由分析k(ISC)及k(RISC)後所得之∆E_ST(18.6±3.1 meV)與密度泛函理論計算之結果(26 meV)相近。吾人在本研究中成功建立一個適當的動力學模型描述對稱雙硼基底螢光材tBuCzDBA之波長相依熱活化延遲螢光動力學過程與熱力學參數。


    The thermally activated delayed fluorescence material is capable of achieving high efficiency in organic light-emitting diode by converting triplet excitons to singlet state via reversed intersystem crossing (RISC) which requires a small energy gap between the lowest singlet (S1) and triplet (T1) excited states(∆E_ST), ca. ≤100 meV. As a result, the photophysical dynamics of TADF materials have been extensively investigated with spectroscopic techniques. However, the present kinetics models, in term of prompt and delayed fluorescence rates, are not appropriate for analyzing the evolution of fluorescence. In this work, we investigated the fluorescence evolutions of intrinsic tBuCzDBA, which has been reported as a high-yield TADF material, and tBuCzDBA immobilized in PMMA(50 %w/w) upon excitation at 355, 440, and 500 nm. The complete kinetics modelling and time-dependent density functional theory calculations are employed to unravel the origins of these constituent fluorescence characteristics, in terms of k(F) 、k(ISC)、k(RISC) and ∆Est. Moreover, the contribution of S1' in the steady-state fluorescence contour(I_S1') can be estimated with the above-mentioned rate coefficients.
    The rise of fluorescence upon excitation at 440 and 500 nm is faster than that at 355 nm, denoting that the excitation at 355 nm leads to the high electronic state (S4) and the late fluorescence is attributed to the internal conversion of S4→S1 and S4→S1'. Moreover, there is no significant difference among the contribution portions of S1' upon excitation at 355, 440, and 500 nm. Therefore, the steady-state fluorescence contours do not significantly depend on the excitation wavelengths and are nearly identical. Besides, the kinetics components including k(F)、k(ISC)、k(RISC) are accelerated owing to the excess energy provided by the internal conversion from upper state to the fluorescent states upon the excitation at 355 nm. In addition, the averaged ∆E_ST is 18.6±3.1 meV, consisting with the predicted values of 26 meV by time-dependent density functional theory calculations. Therefore, we demonstrated an appropriate kinetics model to unravel the mechanisms of the TADF molecules.

    目錄 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 實驗動機與目的 2 第二章 熱活化延遲螢光材料與聚甲基丙烯酸甲酯之性質 7 2.1 熱活化延遲螢光材料之放光機制 7 2.2 三重態-三重態消滅 8 2.3 以兩能態熱平衡之動力學模型解釋熱活化延遲螢光 8 2.3.1 動力學模型之基本假設 8 2.3.2 熱活化延遲螢光的動力過程及其速率常數與∆E_ST之關係的推導 11 2.4 聚甲基丙烯酸甲酯之性質 13 第三章 光譜技術原理、實驗架設與樣品製備 20 3.1 光譜技術原理 20 3.1.1 穩態紫外/可見光吸收光譜法 20 3.1.2 穩態與瞬態螢光光譜法 21 3.2 儀器架設 22 3.2.1 穩態紫外/可見光吸收光譜儀 22 3.2.2 瞬態螢光光譜法 22 3.2.2.1 雷射激發系統 22 3.2.2.2 螢光強度時間側寫偵測系統 23 3.2.2.3 數據擷取系統 23 3.3 實驗樣品製備 23 3.3.1 純tBuCzDBA之固體薄膜 24 3.3.2 tBuCzDBA摻雜PMMA之固體薄膜 24 3.3.3 實驗藥品 25 3.4 儀器參數設定 25 3.4.1 穩態紫外/可見光吸收光譜儀 25 3.4.2 穩態螢光光譜儀 26 3.4.3 瞬態螢光光譜法 26 第四章 理論計算 35 4.1 電子基態之結構優化與其垂直躍遷 35 4.2 弗蘭克-康登電子能態之相對能量與指認 35 4.2.1 分子的對稱結構對其電子能態之影響 35 4.2.2 弗蘭克-康登電子能態之相對能量 36 4.3 S1及S1'單重激發態之結構優化 36 第五章 實驗結果與討論 50 5.1 選擇激發樣品的波長 50 5.2 穩態螢光光譜 51 5.3 以四能態熱平衡之動力學模型解釋熱活化延遲螢光 51 5.3.1 動力學模型之假設 51 5.3.2 熱活化延遲螢光的動力學過程及其速率常數的推導 52 5.4 螢光強度時間側寫之擬合 54 5.5 螢光強度時間側寫之上升部分於不同激發波長下的差異 55 5.6 以螢光強度時間側寫之緩解部分的擬合結果計算動力學參數及其討論 55 5.6.1 速率常數k(F)、k(ISC)、k(RISC)及k(S1') 55 5.6.2 螢光強度時間側寫之擬合的緩解生命期所近似之緩解過程 57 5.6.3 tBuCzDBA之第一單重激發態與第一三重激發態的能量差 58 5.6.4 S1'輻射緩解回到電子基態所放射之螢光的貢獻程度 58 第六章 結論 72

    第一章
    [1] Apple Inc. IphoneXS: Display.
    https://www.apple.com/tw/iphone-xs/display (accessed Apr 30, 2019).
    [2] Volz, D.; Wallesch, M.; Fléchon, C.; Danz, M.; Verma, A.; Navarro, J. M.; Zink, D. M.; Bräse, S.; Baumann, T. Green Chem. 2015, 17, 1988−2011.
    [3] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392−11394.
    [4] Deaton, J. C.; Switalski, S. C.; Kondakov, D. Y.; Young, R. H.; Pawlik, T. D.; Giesen, D. J.; Harkins, S. B.; Miller, A. J. M.; Mickenberg, S. F.; Peters, J. C. J. Am.
    Chem. Soc. 2010, 132, 9499−9508.
    [5] Goushi, K.; Adachi, C. Appl. Phys. Lett. 2012, 101, 023306.
    [6] Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 26283−26289.
    [7] Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908−11911.
    [8] Cho, Y. J.; Jeon, S. K.; Chin, B. D.; Yu, E.; Lee, J. Y. Angew. Chem. 2015, 54, 5201−5204.
    [9] OLED-info. TADF OLED emitters: Introduction and market status.
    https://www.oled-info.com/tadf (accessed Apr 30, 2019).
    [10] Delorme, R.; Perrin, F. J. Phys. Rad. Ser. 1929, 10, 177−186.
    [11] Boudin, S. J. Chim. Phys. 1930, 27, 285−290.
    [12] Lewis, G. N.; Lipkin, D.; Magel, T. T. J. Am. Chem. Soc. 1941, 63, 3005−3018.
    [13] Parker, C. A.; Hatchard, C. G. Trans. Faraday Soc. 1961, 57, 1894−1904.
    [14] Blaskie, M. W.; McMillin, D. R. Inorg. Chem. 1980, 19, 3519−3522.
    [15] Kirchhoff, J. R.; Gamache, R. E.; Blaskie, M. W.; Del Paggio, A. A.; Lengel, R. K.; McMillin, D. R. Inorg. Chem. 1983, 22, 2380−2384.
    [16] Berberan-Santos, M. N.; Garcia, J. M. M.; J. Am. Chem. Soc. 1996, 118, 9391−9394.
    [17] Baleizão, C.; Berberan-Santos, M. N. Ann. N. Y. Acad. Sci. 2008, 1130, 224−234.
    [18] Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802−4806.
    [19] Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302.
    [20] Lee, D. R.; Kim, B. S.; Lee, C. W.; Im, Y.; Yook, K. S.; Hwang, S. H.; Lee, J. Y. ACS Appl. Mater. Interfaces 2015, 7, 9625−9629.
    [21] Volz, D.; Chen, Y.; Wallesch, M.; Liu, R.; Fléchon, C.; Zink, D. M.; Friedrichs, J.; Flügge, H.; Steininger, R.; Göttlicher, J.; Heske, C.; Weinhardt, L.; Bräse, S.; So, F.; Baumann, T. Adv. Mater. 2015, 27, 2538−2543.
    [22] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234−238.
    [23] Hashimoto, M.; Igawa, S.; Yashima, M.; Kawata, I.; Hoshino, M.; Osawa, M. J. Am. Chem. Soc. 2011, 133, 10348−10351.
    [24] Siddique, Z. A.; Yamamoto, Y.; Ohno, T.; Nozaki, K. Inorg. Chem. 2003, 42, 6366−6378.
    [25] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253−258.
    [26] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931−7958.
    [27] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326−332.
    [28] Dias, F. B.; Santos, J.; Graves, D. R.; Data, P.; Nobuyasu, R. S.; Fox, M. A.; Batsanov, A. S.; Palmeira, T.; Berberan-Santos, M. N.; Bryce, M. R.; Monkman, A. P. Adv. Sci. 2016, 3, 1600080.
    [29] Gan, L.; Gao, K.; Cai, X.; Chen, D.; Su, S. J. J. Phys. Chem. Lett. 2018, 9, 4725−4731.
    [30] Rothe, C.; Monkman, A. J. Chem. Phys. 2005, 123, 244904.
    [31] Hosokai, T.; Matsuzaki, H.; Furube, A.; Tokumaru, K.; Tsutsui, T.; Nakanotani, H.; Yahiro, M.; Adachi, C. SID Symposium Digest of Technical Papers 2016, 47, 786−789.
    [32] Haase, N.; Danos, A.; Pflumm, C.; Morherr, A.; Stachelek, P.; Mekic, A.; Brütting, W.; Monkman, A. P. J. Phys. Chem. C 2018, 122, 29173−29179.
    [33] Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S. J. Chem. Sci. 2016, 7, 4264−4275.
    [34] Wu, T. L.; Huang, M. J.; Lin, C. C.; Huang, P. Y.; Chou, T. Y.; Chen-Cheng, R. W.; Lin, H. W.; Liu, R. S.; Cheng, C. H. Nat. Photonics 2018, 12, 235−240.
    第二章
    [1] Max Mile Technologies. Application notes: Electroluminescence vs. Photoluminescence.
    http://www.maxmiletech.com/applicationnotes/ELvsPL.pdf (accessed May 27, 2019).
    [2] Turro, N. J. Modern Molecular Photochemistry, New ed.; University Science Books, 1991.
    [3] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234−238.
    [4] Berberan-Santos, M. N.; Garcia, J. M. M. J. Am. Chem. Soc. 1996, 118, 9391−9394.
    [5] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931−7958.
    [6] Masui, K.; Nakanotani, H.; Adachi, C. Org. Electron. 2013, 14, 2721−2726.
    [7] Dexter, D. L. J. Chem. Phys. 1953, 21, 836−850.
    [8] Ma, R. Light-Emitting Diodes (OLEDs). In Handbook of Visual Display Technology; Chen, J.; Cranton, W.; Fihn, M., Ed.; Springer: Berlin, 2016; pp 1799−1820.
    [9] Kirchhoff, J. R.; Gamache, R. E.; Blaskie, M. W.; Del Paggio, A. A.; Lengel, R. K.; McMillin, D. R. Inorg. Chem. 1983, 22, 2380−2384.
    [10] Hager, G. D.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7031−7037.
    [11] Rowley, M. I.; Coolen, A. C. C.; Vojnovic, B.; Barber, P. R. PLOS One 2016, 11, 1−28.
    [12] Valeur, B. Molecular Fluorescence: Principles and Applications, 1st ed.; Wiley-VCH: Weinheim, 2001.
    [13] Magde, D.; Wong, R.; Seybold, P. G. ‎Photochem. Photobiol. 2002, 75, 327−334.
    [14] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326−332.
    [15] Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070−18081.
    [16] Wu, T. L.; Huang, M. J.; Lin, C. C.; Huang, P. Y.; Chou, T. Y.; Chen-Cheng, R. W.; Lin, H. W.; Liu, R. S.; Cheng, C. H. Nat. Photonics 2018, 12, 235−240.
    [17] Sigma-Aldrich. Product comparison guide: Poly(methyl methacrylate).
    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/structure4/022/mfcd00134349.eps/_jcr_content/renditions/mfcd00134349-large.png (accessed Jun 29, 2019).
    [18] Ahmed, R. M.; Saif, M. Chin. J. Phys. 2013, 51, 511−521.
    第三章
    [1] Faust, B. Modern Chemical Techniques:An Essential Reference for Students and Teachers; Royal Society of Chemistry, 1997; pp 92−115.
    [2] USB Optical Bench Options.
    https://oceanoptics.com/product-details/usb4000-optical-bench-options (accessed Mar 28, 2019).
    [3] Wikipedia, the free encyclopedia.
    https://en.wikipedia.org/wiki/Franck-Condon-principle (accessed Mar 28, 2019).
    [4] 林敬二與林宗義 儀器分析,第四版,美亞書版:台北,1994;上冊;頁174。
    第四章
    [1] Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405−3416.
    [2] Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;. Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski. J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.
    [3] Hosokai, T.; Matsuzaki, H.; Furube, A.; Tokumaru, K.; Tsutsui, T.; Nakanotani, H.; Yahiro, M.; Adachi, C. SID Symposium Digest of Technical Papers 2016, 47, 786−789.
    [4] Ahn, C. H.; Kim, D. ChemPhotoChem 2019, 3, 1−8.
    第五章
    [1] Kasha, M. Radiat. Res. Suppl. 1960, 2, 243−275.
    [2] Jortner, J.; Rice, S. A.; Hochstrasser, R. M. Adv. Photochem. 1969, 7, 149−173.
    [3] Dronskowski, R. Computational Chemistry of Solid State Materials; Wiley: New York, 2006; p 160.
    [4] Ma, R. Light-Emitting Diodes (OLEDs). In Handbook of Visual Display Technology; Chen, J.; Cranton, W.; Fihn, M., Ed.; Springer: Berlin, 2016; pp 1799−1820.
    [5] Nakagawa, T.; Ku, S. Y.; Wong, K. T.; Adachi, C. Chem. Commun. 2012, 48, 9580−9582.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE