研究生: |
黃國恩 Huang, Guo-En |
---|---|
論文名稱: |
基於Android智慧型裝置平台透過人臉方向辨識之資訊擷取系統實現 Implementation of An Information Extraction System for Android-based Smartphones via Face Orientation Recognition |
指導教授: |
蔡育仁
TSAI, YUH-REN |
口試委員: |
鐘太郎
JONG, TAI-LANG 黃之浩 HUANG, CHIH-HAO |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 人臉方向 、資訊擷取 |
外文關鍵詞: | Face Orientation |
相關次數: | 點閱:128 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人臉偵測技術的快速發展與應用越來廣泛,配合智慧型手機日益達 與其運算速 度也有飛快的進步,因此即時人臉偵測使用在智慧型手機上應越來 越多,本研究使用 Android系統的智慧型手機來進行即時人臉偵 測並且希望除了測人臉功能以外,還可準確地量轉動的實際角度並使用偵出來資訊來執行一些動作。本研究透過 Google Vision API提供的服務來進行優化,使用 提供的服務來進行優化,使用 Google API提供的人臉轉動 提供的人臉轉動 Euler值來訓練回歸方程式並且分析本實驗室親自建設 值來訓練回歸方程式並且分析本實驗室親自建設 的人臉轉動資料庫與網路上之優劣。由於智慧型手機在偵測大角度(大於 60 度)偵測時並非十分穩定,因此本研究也對問 題做出優化的動作。最 後本系統為了讓使用者有更好的體驗,在整個中也詳細考慮各種狀況與設計使用者在操作上可以更快速簡單。
With the rapid development and application of face detection technology, the adoption of smart phones is getting more and more advanced , and the speed of computing is also increasing rapidly. This real-time face detection use on smart phones more and more applications, this study uses Android’s smartphone for real-time face detection and hope in addition to the function to detect face, but also can accurately measure the actual angle of the face rotation and use the detected angle information to perform some actions. This study optimizes the services provided by the Google Vision API, uses the face rotation Euler value provided by the Google API to train the regression equation and analyzes the advantages and disadvantages of our laboratory built the face rotation database and the face rotation database on the network. Since smartphones are not enough stable when detection large angles (greater than 60 degrees) , this study also optimizes the problem. Finally, in order to give the user a better user experience, in this system the user’s various conditions are also considered in detail, and design user can operate faster and easier.
[1] Kimio Hamasaki , Toshiyuki Nishiguchi , Reiko Okumura , Yasushige Nakayama and Akio Ando , “A 22.2 multichannel sound system for ultrahigh-definition TV (UHDTV)”, NHK Science & Technical Research Laboratories, Tokyo, 157-8510, Japan, April 2008
[2] 正常的雙眼視覺 (資料出處: http://www.wunching.com.-tw/img/Books_files/B390-9789862369258-trial.pdf)
[3] Android , Wikipedia (資料出處:https://zh.wiki-pedia.org/wiki/Android)
[4] Android歷史 (資料出處:https://www.android.com/intl/zhTW_tw/history/#/-marshmallow)
[5] 灰階處理(Gray Level Processing) (資料出處: https://cg2010studio.com/2011/06-/06/opencv%E8%BD%89%E6%8F%9B%E5%BD%B1%E5%83%8F%E7%82%BA%E7%81%B0%E9%9A%8E-transform-image-to-gray-level/comment-page-2/)
[6] Wu Zhihong and Xiao Xiaohong , “|Study on Histogram Equalization” , 2011 International Symposium on Intelligence Information Processing and Trusted Computing
[7] 積分影像(Integral Image) (資料出處: https://cg2010studio.com/2012-/04/24/%E7%A9%8D%E5%88%86%E5%BD%B1%E5%83%8F-integral-image/)
[8] Paul Viola and Michael Jones “Rapid Object Detection using a Boosted Cascade of Simple Features” , 2001
[9] Google API for Android (資料出處:https://-developers.google.com/android/)
[10] Google Vision API (資料出處: https://-developers.google.com/vision/)
[11] Google Vision API for Face Detection (資料出處: https://developers.-google.com/vision/face-detection-concepts)
[12] USB Implementers Forum , “On-The-Go Supplement to the USB 2.0 Specification” December 5,2006
[13] USB Implementers Forum , “UVC 1.5 Class specification” , August 9 , 2012
[14] Databases for Face Detection and Pose Estimation (資料出處:http://robotics.-csie.ncku.-edu.tw/Databases/FaceDetect_PoseEstimate.htm)