簡易檢索 / 詳目顯示

研究生: 林宏鑫
Lin, Hung-Hsin
論文名稱: 提升有機發光二極體熱活化延遲螢光元件效能
The performance improvement of the Thermally Activated Delayed Fluorescence organic light-emitting diodes
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
趙宇強
Chao, Yu-Chiang
賴振昌
Lai, Jhen-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱活化延遲螢光材料溶液製程
外文關鍵詞: Thermally activated delayed fluorescence material, Solution-processed
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷光系統的有機發光二極體雖有高亮度及高效率等優點,但成本也相對昂貴,而螢光系統有機發光二極體價格雖低廉,但整體電性表現卻不如磷光系統,而本論文利用熱活化延遲螢光(Thermally Activated Delayed Fluorescence, TADF )材料DMAC-DPS(10,10′-(4,4′-Sulfonylbis(4,1-phenylene))bis(9,9-dimethyl-9,10- dihydroacridine))搭配藍螢光材料TBPe(2,5,8,11-Tetra-tert-butylperylene)利用本實驗室獨有的刮刀塗佈技術,以溶液製程的方式製作出有機發光二極體元件,透過找尋合適的主發光體材料以及調配發光層溶質之間的比例來改善元件的電性表現。相較於磷光與螢光系統,其成本較低且電性上也有與磷光相近的表現。
    此外本論文將電子注入材料溶入有機溶劑之中,並同樣以刮刀塗佈製備有機發光二極體元件,藉由改變不同的刮刀速度和加速度來調整電子注入層之膜厚,以及測試不同溶液濃度藉此找尋最佳製程參數,達到全溶液製程的希望。


    Although the organic light-emitting diode of the phosphorescent system has the advantages of high brightness and high efficiency, but the cost is relatively expensive. The price of the fluorescent materials is low, but the overall electrical performance is not as good as that of the phosphorescent system. In this thesis, the thermally activated delayed fluorescence (TADF) material DMAC-DPS(10,10′-(4,4′-Sulfonylbis(4,1-phenylene))bis(9,9-dimethyl-9 ,10- dihydroacridine)) with blue fluorescent guest material TBPe (2,5,8,11-Tetra-tert-butylperylene) are used to produce the solution-processed organic light-emitting diode devices with the unique blade coating technology of our laboratory. The electrical performance of the device is improved by finding a suitable host material and adjusting the ratio between the solutes of the light emitting layer. Compared with phosphorescent and fluorescent systems, TADF system cost is lower and its electrical performance is as well as phosphorescent system . In addition, in this thesis, electron injection material is dissolved in an organic solvent in order to be used in solution process by blade coating technology. The film thickness of the electron injection layer is adjusted by changing different blade speeds and accelerations, and different concentrations of electron injection solutions are tested for finding the best process parameters to achieve the hope of the full solution process.

    摘要----------------------------------i Abstract-----------------------------ii 致謝----------------------------------iv 目錄----------------------------------v 圖目錄--------------------------------vii 表目錄--------------------------------x 第一章、緒論---------------------------1 1.1 前言------------------------------1 1.2 有機發光二極體起源簡介--------------1 1.3 研究目的---------------------------2 1.4 論文架構---------------------------3 第二章、有機發光二極體基礎結構與理論------4 2.1 有機發光二極體結構------------------4 2.2 發光原理---------------------------5 2.3 熱活化延遲螢光發光原理--------------6 2.4 主發光體及客發光體能量轉移機制-------7 2.4.1 輻射能量轉移---------------------7 2.4.2 非輻射能量轉移-------------------8 第三章、OLED元件製作流程及材料簡介-------10 3.1 OLED元件製作之流程-----------------10 3.1.1 ITO基板蝕刻---------------------10 3.1.2 有機薄膜塗佈---------------------13 3.1.3 電子注入層及電極蒸鍍--------------17 3.1.4 元件封裝與電性量測----------------17 3.2 實驗材料簡介-----------------------20 3.2.1 電洞注入材料---------------------20 3.2.2 電洞傳輸材料---------------------21 3.2.3 TADF材料------------------------21 3.2.4 主發光體材料---------------------22 3.2.5 介面層材料-----------------------25 第四章、實驗結果與分析------------------26 4.1 有機發光二極體TADF元件之電性改善-----26 4.1.1 CzSi為主發光體測試---------------26 4.1.2 更換主發光體為SimCP2-------------29 4.1.3 檢驗電子或電洞之不足--------------33 4.1.4 SimCP2搭配SPPO13雙主光體---------36 4.1.5 替換SimCP2為TCTA搭配SPPO13為雙主發光體--40 4.2 有機發光二極體TADF元件之膜面改善-----44 4.2.1 基板溫度之調變-------------------44 4.3 介面層應用於TADF有機發光二極體-------49 4.3.1 測試不同介面層之下藥量------------49 4.3.2 提升刮刀之速度與加速度------------54 4.3.3 介面層最佳參數應用於Li3N----------59 第五章、結論與未來展望------------------63 第六章、參考文獻-----------------------65

    [1]M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [2]C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [3]L. Duan, D. Zhang, K. Wu, X. Huang, L. Wang, and Y. Qiu, "Controlling the Recombination Zone of White Organic Light‐Emitting Diodes with Extremely Long Lifetimes," Advanced Functional Materials, vol. 21, no. 18, pp. 3540-3545, 2011.
    [4]陳金鑫 and 黃孝文, "OLED 夢幻顯示器," OLED 材料與元件. 台灣: 五南, 2007.
    [5]M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules. VCH publishers, 1995.
    [6]H. Yersin, Highly efficient OLEDs: Materials based on thermally activated delayed fluorescence. John Wiley & Sons, 2019.
    [7]R. Holmes, B. D’Andrade, S. Forrest, X. Ren, J. Li, and M. Thompson, "Efficient, deep-blue organic electrophosphorescence by guest charge trapping," Applied Physics Letters, vol. 83, no. 18, pp. 3818-3820, 2003.
    [8]C.-L. Lee, K. B. Lee, and J.-J. Kim, "Polymer phosphorescent light-emitting devices doped with tris (2-phenylpyridine) iridium as a triplet emitter," Applied Physics Letters, vol. 77, no. 15, pp. 2280-2282, 2000.
    [9]V. Cleave, G. Yahioglu, and P. Le, "Barny; RH Friend; N. Tessler," Advt. Mater, vol. 11, p. 285, 1999.
    [10]J. Kido, H. Hayase, K. Hongawa, K. Nagai, and K. Okuyama, "Bright red light‐emitting organic electroluminescent devices having a europium complex as an emitter," Applied physics letters, vol. 65, no. 17, pp. 2124-2126, 1994.
    [11]C. Wu, C. Wu, J. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices," Applied Physics Letters, vol. 70, no. 11, pp. 1348-1350, 1997.
    [12]M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, "Water vapor and oxygen degradation mechanisms in organic light emitting diodes," Advanced Functional Materials, vol. 11, no. 2, pp. 116-121, 2001.
    [13]M. Mamada, K. Inada, T. Komino, W. J. Potscavage Jr, H. Nakanotani, and C. Adachi, "Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system," ACS central science, vol. 3, no. 7, pp. 769-777, 2017.
    [14]S. W. Liu, C. H. Yuan, S. J. Yeh, M. F. Wu, C. T. Chen, and C. C. Lee, "Efficiency enhancement of solution‐processed single‐layer blue‐phosphorescence organic light‐emitting devices having co‐host materials of polymer (PVK) and small‐molecule (SimCP2)," Journal of the Society for Information Display, vol. 19, no. 4, pp. 346-352, 2011.
    [15]Y. Tao, C. Yang, and J. Qin, "Organic host materials for phosphorescent organic light-emitting diodes," Chemical Society Reviews, vol. 40, no. 5, pp. 2943-2970, 2011.
    [16]Z. Liu et al., "Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials," Organic Electronics, vol. 41, pp. 237-244, 2017.
    [17]K. S. Yook, S. E. Jang, and J. Y. Lee, "Efficiency improvement of solution processed blue phosphorescent devices using high triplet energy electron transport layer," Electrochemical and Solid State Letters, vol. 13, no. 10, p. J122, 2010.
    [18]H. Peng, W. Wang, and S. Chen, "Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris (N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer," IEEE Electron Device Letters, vol. 36, no. 4, pp. 369-371, 2015.
    [19]Y. Li, L. Zhou, Y. Jiang, R. Cui, X. Zhao, and H. Zhang, "High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter," Journal of Materials Chemistry C, vol. 5, no. 17, pp. 4219-4225, 2017.
    [20]H. Spreitzer, H. Becker, K. Treacher, S. Heun, and A. Sauer, "Solutions and dispersions of organic semiconductors," ed: Google Patents, 2006.
    [21]D. P.-K. Tsang, T. Matsushima, and C. Adachi, "Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers," Scientific reports, vol. 6, no. 1, pp. 1-10, 2016.
    [22]L. Duan et al., "Thermally decomposable lithium nitride as an electron injection material for highly efficient and stable OLEDs," The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13386-13390, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE