研究生: |
陸金殿 Lu, Chin-Tien |
---|---|
論文名稱: |
使用重水對比劑的氫磁振造影: 小動物模型之影像對比與腦血流速分析 Perfusion 1H MRI with D2O as contrast agent: Investigation on the image contrast and CBF quantification on rat model |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: |
黃騰毅
彭旭霞 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 氧化氘 、磁振造影對比劑 、微灌流造影 、氫氘交換 |
外文關鍵詞: | D2O, MRI contrast agent, perfusion imaging, H-D exchange |
相關次數: | 點閱:152 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化氘(D2O)因其為純水之無放射性同位素且幾乎不具生物毒性,被廣泛應用於核磁共振與磁振造影研究中。然而,作為早期微灌流磁振造影的對比劑之一,重水影像卻受限於磁振造影偵測靈敏度的限制。因此,我們改以一般收取氫原子訊號的方式來間接檢測非共振頻率重水的微灌流影像。本實驗中,含有血清蛋白的假體實驗與活體鼠腦動態影像分別用以檢測新式的重水對比機制。在生理訊號方面,我們於三種不同的動物實驗中欲建立清楚的影像對比參數,並透過血液微灌流參數分析來評估不同生理情況對血流速的影響。實驗結果顯示高解析度的質子加權影像較不受磁化率的影響且清楚對比出重水微灌流於灰質與白質之間的差異;假體實驗亦指出重水於高濃度血清蛋白中有顯著的對比差異。基於自由通透血腦障蔽之特性,高解析度重水微灌流影像可於未來研究中對比腦神經病變的可能組織並以血流速分析提供臨床術前術後之病人康復評估。
Deuterium oxide (D2O), which is a nonradioactive and relatively nontoxicity isotope of pure water, was applied as a contrast agent in early NMR and MRI studies. The researches have proved D2O can be utilized as an effective perfusion tracer. However, the detection of deuteron signal was limited to its theoretical sensitivity. Herein we apply an indirect detection strategy to trace administered D2O by monitoring 1H signal attenuation. In this study, phantom experiments were conducted to investigate this novel contrast mechanism. Furthermore, in vivo rat brain imaging was performed on three cases with respective contrast parameters: (1) carotid artery injection, (2) normocapia and hypercapnia models, and (3) infusion administration. Quantitative analysis provides alternative perfusion information against gadolinium-based imaging approaches. Contrast between gray matter and white matter can also be observed in high-resolution imaging. The results suggest proton density-weighted imaging is potential to exhibit better SNR with less susceptibility artifacts. As a freely diffusible tracer, applications of D2O perfusion MRI are especially valuable for its fast exchange with water proton in future research.
1. Kety, S. S. and C. F. Schmidt (1945). "THE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN BY THE USE OF NITROUS OXIDE IN LOW CONCENTRATIONS." American Journal of Physiology 143(1): 53-66.
2. Hoeffner, E. G., et al. (2004). "Cerebral perfusion CT: Technique and clinical applications." Radiology 231(3): 632-644.
3. Wintermark, M., et al. (2008). "Cerebral perfusion CT: Technique and clinical applications." Journal of Neuroradiology 35(5): 253-260.
4. Gambhir, S. S., et al. (1987). "A STUDY OF THE SINGLE COMPARTMENT TRACER KINETIC-MODEL FOR THE MEASUREMENT OF LOCAL CEREBRAL BLOOD-FLOW USING O-15-WATER AND POSITRON EMISSION TOMOGRAPHY." Journal of Cerebral Blood Flow and Metabolism 7(1): 13-20.
5. Ohta, S., et al. (1996). "Cerebral O-15 water clearance in humans determined by PET .1. Theory and normal values." Journal of Cerebral Blood Flow and Metabolism 16(5): 765-780.
6. Okazawa, H. and M. Vafaee (2001). "Effect of vascular radioactivity on regional values of cerebral blood flow: Evaluation of methods for (H2OPET)-O-15 to distinguish cerebral perfusion from blood volume." Journal of Nuclear Medicine 42(7): 1032-1039.
7. Tang, M. X., et al. (2011). "Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability." Interface Focus 1(4): 520-539.
8. Calamante, F., et al. (1999). "Measuring cerebral blood flow using magnetic resonance imaging techniques." Journal of Cerebral Blood Flow and Metabolism 19(7): 701-735.
9. Petrella, J. R. and J. M. Provenzale (2000). "MR perfusion imaging of the Brain: Techniques and applications." American Journal of Roentgenology 175(1): 207-219.
10. Jackson, A. (2004). "Analysis of dynamic contrast enhanced MRI." British Journal of Radiology 77: S154-S166.
11. Haacke, E. M., et al. (2009). "Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1." American Journal of Neuroradiology 30(1): 19-30.
12. Mittal, S., et al. (2009). "Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2." American Journal of Neuroradiology 30(2): 232-252.
13. Sourbron, S. P. and D. L. Buckley (2012). "Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability." Physics in Medicine and Biology 57(2): R1-R33.
14. Petersen, E. T., et al. (2006). "Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques." British Journal of Radiology 79(944): 688-701.
15. Kuo, P. H., et al. (2007). "Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis." Radiology 242(3): 647-649.
16. Liu, T. T. and G. G. Brown (2007). "Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods." Journal of the International Neuropsychological Society 13(3): 517-525.
17. Brown, G. G., et al. (2007). "Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications." Journal of the International Neuropsychological Society 13(3): 526-538.
18. Luedemann, L., et al. (2009). "Brain tumor perfusion: Comparison of dynamic contrast enhanced magnetic resonance imaging using T(1), T(2), and T(2)* contrast, pulsed arterial spin labeling, and H(2)(15)O positron emission tomography." European Journal of Radiology 70(3): 465-474.
19. Ackerman, J. J. H., et al. (1987). "DEUTERIUM NUCLEAR-MAGNETIC-RESONANCE MEASUREMENTS OF BLOOD-FLOW AND TISSUE PERFUSION EMPLOYING (H2O)-H-2 AS A FREELY DIFFUSIBLE TRACER." Proceedings of the National Academy of Sciences of the United States of America 84(12): 4099-4102.
20. Müller, S. and J. Seelig (1987). "In vivo NMR imaging of deuterium." Journal of Magnetic Resonance (1969) 72(3): 456-466.
21. Ewy, C. S., et al. (1988). "Deuterium NMR cerebral imaging in situ." Magn Reson Med 8(1): 35-44.
22. Detre, J. A., et al. (1990). "MEASUREMENT OF REGIONAL CEREBRAL BLOOD-FLOW IN CAT BRAIN USING INTRACAROTID (H2O)-H-2 AND H-2 NMR IMAGING." Magnetic Resonance in Medicine 14(2): 389-395.
23. Kim, S. G. and J. J. H. Ackerman (1988). "MULTICOMPARTMENT ANALYSIS OF BLOOD-FLOW AND TISSUE PERFUSION EMPLOYING D2O AS A FREELY DIFFUSIBLE TRACER - A NOVEL DEUTERIUM NMR TECHNIQUE DEMONSTRATED VIA APPLICATION WITH MURINE RIF-1 TUMORS." Magnetic Resonance in Medicine 8(4): 410-426.
24. Kim, S. G. and J. J. H. Ackerman (1990). "QUANTIFICATION OF REGIONAL BLOOD-FLOW BY MONITORING OF EXOGENOUS TRACER VIA NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY." Magnetic Resonance in Medicine 14(2): 266-282.
25. Furuya, Y., et al. (1997). "The measurement of blood flow parameters with deuterium stable isotope MR imaging." Ann Nucl Med 11(4): 281-284.
26. Bogin, L., et al. (2002). "Parametric imaging of tumor perfusion using flow- and permeability-limited tracers." Journal of Magnetic Resonance Imaging 16(3): 289-299.
27. Koletzko, B., et al. (1997). "Safety of stable isotope use." European Journal of Pediatrics 156: S12-S17.
28. Jones, P. J. H. and S. T. Leatherdale (1991). "STABLE ISOTOPES IN CLINICAL RESEARCH - SAFETY REAFFIRMED." Clinical Science 80(4): 277-280.
29. Barbour, H. G. (1937). "The Basis of the Pharmacological Action of Heavy Water in Mammals." Yale J Biol Med 9(6): 551-565.
30. Wang, F. N., et al. (2013). "Water signal attenuation by D2O infusion as a novel contrast mechanism for 1H perfusion MRI." NMR Biomed 26(6): 692-698.
31. Bagher-Ebadian, H., et al. (2011). "MRI estimation of gadolinium and albumin effects on water proton." Neuroimage 54: S176-S179.
32. Sicard, K. M. and T. Q. Duong (2005). "Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals." Neuroimage 25(3): 850-858.
33. Leithner, C., et al. (2010). "Determination of the brain-blood partition coefficient for water in mice using MRI." Journal of Cerebral Blood Flow and Metabolism 30(11): 1821-1824.
34. Iliff, J. J., et al. (2012). "A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid beta." Science Translational Medicine 4(147).
35. Ma, B. and R. Nussinov (2011). "Polymorphic Triple beta-Sheet Structures Contribute to Amide Hydrogen/Deuterium (H/D) Exchange Protection in the Alzheimer Amyloid beta 42 Peptide." Journal of Biological Chemistry 286(39): 34244-34253.
36. Hendrich, K. S., et al. (2001). "Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied by arterial spin-labeled MRI." Magnetic Resonance in Medicine 46(1): 202-206.
37. Tsekos, N. V., et al. (1998). "Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies." Magn Reson Med 39(4): 564-573.
38. Wirestam, R., et al. (2000). "Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques." Magnetic Resonance in Medicine 43(5): 691-700.
39. Todd, N. V., et al. (1986). "Reperfusion after cerebral ischemia: influence of duration of ischemia." Stroke 17(3): 460-466.
40. St Lawrence, K. S. and T. Y. Lee (1998). "An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation." J Cereb Blood Flow Metab 18(12): 1378-1385.
41. Zhu, X.-H., et al. (2013). "In vivo measurement of CBF using 17O NMR signal of metabolically produced H217O as a perfusion tracer." Magnetic Resonance in Medicine 70(2): 309-314.
42. Kobayashi, M., et al. (2011). "Development of an H(2)(15)O steady-state method combining a bolus and slow increasing injection with a multiprogramming syringe pump." J Cereb Blood Flow Metab 31(2): 527-534.
43. Calamante, F. "Arterial input function in perfusion MRI: A comprehensive review." Progress in Nuclear Magnetic Resonance Spectroscopy(0).