研究生: |
賴銘淙 Ming-Tsung Lai |
---|---|
論文名稱: |
分析基因多型性及抗癌藥物對人類攝護腺癌之應用 Analysis of Gene Polymorphisms and Application of Anti-cancer Drugs to Human Prostate Cancer |
指導教授: |
林彩雲
Tsai-Yun Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 前列腺癌 、前列腺腫瘤 、基因多型性 、抗癌藥物 |
外文關鍵詞: | glutathione S-transferase, insulin-like growth factor, epidermal growth factor, FK228, Prostate cancer |
相關次數: | 點閱:125 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前列腺癌是泌尿系統疾病中,最常見的惡性腫瘤病變,在其發生的過程中有許多複雜的因子參與。目前已知有許多去毒性有關的酵素或是生長因子,可能與前列腺癌的形成有關。本實驗第一部分的實驗目的係探討glutathione S-transferase M1 (GST M1)、 insulin-like growth factors-2 (IGF-2)以及epidermal growth factor (EGFR)等因子的基因之多形性是否可以被做為前列腺癌臨床上鑑別診斷的標誌。在本研究中﹐把來自相同區域的96位前列腺癌病人的GST M1,IGF-2和EGFR基因多型性的發生頻率與121個健康的男性志願者做比較(受檢驗之男性年齡皆大於六十歲)。研究結果發現,前列腺癌病人與健康的男性在GST M1之基因型上有明顯的不同(p = 0.042);在前列腺癌病人組中缺少GST M1之基因者有59.4 %,顯著高於對照組中健康男性出現的比率(45.5 %)。然而,在IGF-2與EGFR方面兩組之間並沒有顯著之差異。根據此項研究發現,在台灣男性族群之中,GST M1基因之多型性可能與前列腺癌的發生機率有關。
第二部分之實驗目的乃在觀察FK228對前列腺腫瘤細胞生長之影響。在動物實驗中發現每週三次餵食NOD-SCID鼠50 mg/kg FK228,抑制腫瘤生長和轉移。腫瘤退化超過25 % 並增進存活率。移植前列腺腫瘤細胞之NOD-SCID鼠所長出之腫瘤體積平均為2 cm3,在實驗進行到一半時平均腫瘤體積為0.8 ± 0.18 cm3,在肺部也可以發現大量前列腺專一抗原的表現,表示有大量的癌細胞轉移至肺部。至於餵食FK228之前列腺腫瘤細胞轉殖NOD-SCID鼠在實驗進行中間,其腫瘤體積平均為0.37 ± 0.1 cm3,實驗終止時其肺部的組織未發現有癌細胞浸潤或是轉移的情形。進一步發現,餵食FK228之老鼠腫瘤細胞表現較多的PSA、Bax與p21,由此及電子顯微鏡檢驗推斷,FK228可以促使腫瘤細胞分化,並且進行程序性凋亡,減少腫瘤細胞之肺轉移。餵食小劑量50 mg/kg 每週三次或一次劑量1.2 g/kg FK228 並無負面影響且前者顯著產生抗癌活性。
實驗結果顯示GST M1 基因在臺灣族群可能與前列腺癌發生有關。而FK228 可能對前列腺癌症患者之治療具有相當的價值。
Prostate cancer is the most common urological malignancy involving multiple factors. Enzymes for detoxification and growth factors might also play a role in the formation of prostate cancer. The aim of part one study was to investigate whether polymorphisms of glutathione S-transferase M1 (GST M1), insulin-like growth factor-2 (IGF-2) and epidermal growth factor (EGFR) genes could be used as genetic markers for association with prostate cancer. We compared the frequency of the polymorphisms of GST M1, IGF-2, and EGFR genes between 96 patients with prostate cancer and 121 healthy male volunteers from the same area (age, > 60 years). There was significant distribution of the genotype of GST M1 gene between prostate cancer group and control group (p = 0.042). Percentage of null GST M1 gene was significantly higher in the cancer group (59.4 %) than control (45.5 %). However, the result revealed no significant association between the prostate cancer and IGF-2 or EGFR genotype distribution.
In part two, we screened the anti-tumor effects of FK228 (depsipeptide) on human prostate cancer. In NOD-SCID mice implanted with these cells, 50 mg/kg FK228 given orally thrice a week led to inhibition of tumor growth and metastasis, tumor regression in >25 % of animals and increased survival. Median time to the experimental end point (tumor volume 2 cm3 or death) in the untreated was 52 days, and average tumor volume was 0.8 ± 0.18 cm3. At the same time, 94.4 % of FK228-treated mice survived and had average tumor volumes of 0.37 ± 0.1 cm3. Sizeable metastases positively stained for PSA and limited air gaps were found in lungs of untreated mice. In animals treated with FK228, lung morphology appeared normal. Primary tumors of treated animals were highly positive for PSA and had an elevated level of p21 and the proapoptotic protein, Bax. Sections taken from FK228-treated animals, examined under an electron microscope, exhibited condensed chromatin and apoptotic bodies. PSA serum levels were higher in untreated compared to treated animals and correlated with tumor volume. Since prolonged oral administration with 50 mg/kg or a single oral dose of 1.2 g/kg FK228 did not cause adverse effects and the former exhibited significant anticancer activity.
In summarizes, this study suggests that the GST M1 gene may be associated with susceptibility of prostate cancer in the Taiwan population and FK228 is likely to display a high therapeutic index and may be beneficial for prostate cancer patients.
1. de Launoit Y, Kiss R, Jossa V, et al. Influences of dihydrotestosterone, testosterone, estradiol, progesterone, or prolactin on the cell kinetics of human hyperplastic prostatic tissue in organ culture. Prostate. 1988;13:143-153.
2. McNeal JE, Redwine EA, Freiha FS, et al. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol. 1988;12:897-906.
3. di Sant'Agnese PA. Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol. 1992;23:287-296.
4. Bruchovsky N, Lesser B, Van Doorn E, et al. Hormonal effects on cell proliferation in rat prostate. Vitam Horm. 1975;33:61-102.
5. Michel P, Van Velthoven R, Petein M, et al. Influence of suramin alone or in combination with DHT and PDGF on the cell proliferation of benign and malignant human prostatic tissues in organ cultures. Anticancer Res. 1991;11:2075-2078.
6. Hsing AW, Chang L, Nomura AM, et al. A glimpse into the future. Epidemiol Rev. 2001;23:2.
7. Scardino PT, Weaver R, Hudson MA. Early detection of prostate cancer. Hum Pathol. 1992;23:211-222.
8. Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistics, 2001. CA Cancer J Clin. 2001;51:15-36.
9. Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968;40:43-68.
10. Chang CK, Yu HJ, Chan KW, et al. Secular trend and age-period-cohort analysis of prostate cancer mortality in Taiwan. J Urol. 1997;158:1845-1848.
11. Steinberg GD, Carter BS, Beaty TH, et al. Family history and the risk of prostate cancer. Prostate. 1990;17:337-347.
12. Keetch DW, Rice JP, Suarez BK, et al. Familial aspects of prostate cancer: a case control study. J Urol. 1995;154:2100-2102.
13. Levine RL, Wilchinsky M. Adenocarcinoma of the prostate: a comparison of the disease in blacks versus whites. J Urol. 1979;121:761-762.
14. Ries LG, Pollack ES, Young JL, Jr. Cancer patient survival: Surveillance, Epidemiology, and End Results Program, 1973-79. J Natl Cancer Inst. 1983;70:693-707.
15. Fraumeni JF, Jr., Mason TJ. Cancer mortality among Chinese Americans, 1950-69. J Natl Cancer Inst. 1974;52:659-665.
16. Jackson MA, Ahluwalia BS, Herson J, et al. Characterization of prostatic carcinoma among blacks: a continuation report. Cancer Treat Rep. 1977;61:167-172.
17. Edwards A, Hammond HA, Jin L, et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992;12:241-253.
18. Reichardt JK, Makridakis N, Henderson BE, et al. Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res. 1995;55:3973-3975.
19. Wilson JD. Recent studies on the mechanism of action of testosterone. N Engl J Med. 1972;287:1284-1291.
20. Chan L, O'Malley BW. Mechanism of action of the sex steroid hormones (first of three parts). N Engl J Med. 1976;294:1322-1328.
21. Noble RL. The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res. 1977;37:1929-1933.
22. Ross R, Bernstein L, Judd H, et al. Serum testosterone levels in healthy young black and white men. J Natl Cancer Inst. 1986;76:45-48.
23. Glantz GM. Cirrhosis And Carcinoma Of The Prostate Gland. J Urol. 1964;91:291-293.
24. Gordon GG, Altman K, Southren AL, et al. Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. N Engl J Med. 1976;295:793-797.
25. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin. 1972;22:232-240.
26. Lee CT, Oesterling JE. Diagnostic markers of prostate cancer: utility of prostate-specific antigen in diagnosis and staging. Semin Surg Oncol. 1995;11:23-35.
27. Chu TM. Prostate-specific antigen and early detection of prostate cancer. Tumour Biol. 1997;18:123-134.
28. Marumo K, Baba S, Murai M. Erectile function and nocturnal penile tumescence in patients with prostate cancer undergoing luteinizing hormone-releasing hormone agonist therapy. Int J Urol. 1999;6:19-23.
29. Ornstein DK, Oh J, Herschman JD, et al. Evaluation and management of the man who has failed primary curative therapy for prostate cancer. Urol Clin North Am. 1998;25:591-601.
30. Snowdon DA, Phillips RL, Choi W. Diet, obesity, and risk of fatal prostate cancer. Am J Epidemiol. 1984;120:244-250.
31. Hill PB, Wynder EL. Effect of a vegetarian diet and dexamethasone on plasma prolactin, testosterone and dehydroepiandrosterone in men and women. Cancer Lett. 1979;7:273-282.
32. Schuman LM, Mandel J, Blackard C, et al. Epidemiologic study of prostatic cancer: preliminary report. Cancer Treat Rep. 1977;61:181-186.
33. Pienta KJ, Esper PS. Risk factors for prostate cancer. Ann Intern Med. 1993;118:793-803.
34. Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol. 1991;145:907-923.
35. Partin AW, Oesterling JE. The clinical usefulness of prostate specific antigen: update 1994. J Urol. 1994;152:1358-1368.
36. Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. Jama. 1995;273:289-294.
37. Wang MC, Valenzuela LA, Murphy GP, et al. Purification of a human prostate specific antigen. Invest Urol. 1979;17:159-163.
38. Gleave ME, Hsieh JT, Wu HC, et al. Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors. Cancer Res. 1992;52:1598-1605.
39. Denis L, Keuppens F, Mahler C, et al. Long term therapy with a depot LHRH analogue (Zoladex) in patients with advanced prostatic cancer. Prog Clin Biol Res. 1987;243A:221-227.
40. Snyder BW, Winneker RC, Batzold FH. Endocrine profile of Win 49596 in the rat: a novel androgen receptor antagonist. J Steroid Biochem. 1989;33:1127-1132.
41. Juniewicz PE, McCarthy M, Lemp BM, et al. The effect of the steroidal androgen receptor antagonist, Win 49,596, on the prostate and testis of beagle dogs. Endocrinology. 1990;126:2625-2634.
42. van Iersel ML, Verhagen H, van Bladeren PJ. The role of biotransformation in dietary (anti)carcinogenesis. Mutat Res. 1999;443:259-270.
43. Guengerich FP. Characterization of human cytochrome P450 enzymes. Faseb J. 1992;6:745-748.
44. Singh RP, Banerjee S, Rao AR. Effect of Aegle marmelos on biotransformation enzyme systems and protection against free-radical-mediated damage in mice. J Pharm Pharmacol. 2000;52:991-1000.
45. Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol. 1999;29:59-124.
46. Morel F, Langouet S, Maheo K, et al. The use of primary hepatocyte cultures for the evaluation of chemoprotective agents. Cell Biol Toxicol. 1997;13:323-329.
47. Guengerich FP. Human cytochrome P-450 enzymes. Life Sci. 1992;50:1471-1478.
48. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992;22:1-21.
49. Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev. 1995;47:271-330.
50. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445-600.
51. Prochaska HJ, Talalay P. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res. 1988;48:4776-4782.
52. Steinkellner H, Rabot S, Freywald C, et al. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res. 2001;480-481:285-297.
53. Kensler TW. Chemoprevention by inducers of carcinogen detoxication enzymes. Environ Health Perspect. 1997;105 Suppl 4:965-970.
54. Hayes JD, Judah DJ, McLellan LI, et al. Ethoxyquin-induced resistance to aflatoxin B1 in the rat is associated with the expression of a novel alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin B1-8,9-epoxide. Biochem J. 1991;279 (Pt 2):385-398.
55. Clifford SC, Neal DE, Lunec J. High level expression of the multidrug resistance (MDR1) gene in the normal bladder urothelium: a potential involvement in protection against carcinogens? Carcinogenesis. 1996;17:601-604.
56. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract. 1996;192:768-780.
57. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29:413-580.
58. Raunio H, Husgafvel-Pursiainen K, Anttila S, et al. Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility--a review. Gene. 1995;159:113-121.
59. Goeptar AR, Scheerens H, Vermeulen NP. Oxygen and xenobiotic reductase activities of cytochrome P450. Crit Rev Toxicol. 1995;25:25-65.
60. Gonzalez FJ. The role of carcinogen-metabolizing enzyme polymorphisms in cancer susceptibility. Reprod Toxicol. 1997;11:397-412.
61. Nebert DW. Role of genetics and drug metabolism in human cancer risk. Mutat Res. 1991;247:267-281.
62. Amos CI, Caporaso NE, Weston A. Host factors in lung cancer risk: a review of interdisciplinary studies. Cancer Epidemiol Biomarkers Prev. 1992;1:505-513.
63. Dusinska M, Ficek A, Horska A, et al. Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat Res. 2001;482:47-55.
64. Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med. 1990;8:583-599.
65. Hiratsuka A, Sebata N, Kawashima K, et al. A new class of rat glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters as metabolites of carcinogenic arylmethanols. J Biol Chem. 1990;265:11973-11981.
66. Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997;10:2-18.
67. Vuilleumier S. Bacterial glutathione S-transferases: what are they good for? J Bacteriol. 1997;179:1431-1441.
68. Garcia-Saez I, Parraga A, Phillips MF, et al. Molecular structure at 1.8 A of mouse liver class pi glutathione S-transferase complexed with S-(p-nitrobenzyl)glutathione and other inhibitors. J Mol Biol. 1994;237:298-314.
69. Sundberg AG, Nilsson R, Appelkvist EL, et al. Immunohistochemical localization of alpha and pi class glutathione transferases in normal human tissues. Pharmacol Toxicol. 1993;72:321-331.
70. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88.
71. Singh SV, Roberts B, Gudi VA, et al. Immunohistochemical localization, purification, and characterization of human urinary bladder glutathione S-transferases. Biochim Biophys Acta. 1991;1074:363-370.
72. Norppa H, Hirvonen A, Jarventaus H, et al. Role of GSTT1 and GSTM1 genotypes in determining individual sensitivity to sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes. Carcinogenesis. 1995;16:1261-1264.
73. Berhane K, Widersten M, Engstrom A, et al. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci
U S A. 1994;91:1480-1484.
74. Smith G, Stanley LA, Sim E, et al. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27-65.
75. Salinas AE, Wong MG. Glutathione S-transferases--a review. Curr Med Chem. 1999;6:279-309.
76. Millar DS, Paul CL, Molloy PL, et al. A distinct sequence (ATAAA)n separates methylated and unmethylated domains at the 5'-end of the GSTP1 CpG island. J Biol Chem. 2000;275:24893-24899.
77. Clapper ML, Hoffman SJ, Carp N, et al. Contribution of patient history to the glutathione S-transferase activity of human lung, breast and colon tissue. Carcinogenesis. 1991;12:1957-1961.
78. Lin X, Tascilar M, Lee WH, et al. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol. 2001;159:1815-1826.
79. Desmots F, Rissel M, Gilot D, et al. Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem. 2002;277:17892-17900.
80. Prestera T, Talalay P, Alam J, et al. Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med. 1995;1:827-837.
81. Lear JT, Heagerty AH, Smith A, et al. Multiple cutaneous basal cell carcinomas: glutathione S-transferase (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence tumour numbers and accrual. Carcinogenesis. 1996;17:1891-1896.
82. Hu X, O'Donnell R, Srivastava SK, et al. Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7beta,8alpha-dihydroxy-9alpha,10alpha-ox y-7,8,9,10-tetrahydrobenzo(a)pyrene. Biochem Biophys Res Commun. 1997;235:424-428.
83. Friling RS, Bergelson S, Daniel V. Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci U S A. 1992;89:668-672.
84. Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ. 1999(148):231-249.
85. Russel M. Thioredoxin genetics. Methods Enzymol. 1995;252:264-274.
86. Yin Z, Ivanov VN, Habelhah H, et al. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000;60:4053-4057.
87. Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. Embo J. 1999;18:1321-1334.
88. Awasthi S, Srivastava SK, Ahmad F, et al. Interactions of glutathione S-transferase-pi with ethacrynic acid and its glutathione conjugate. Biochim Biophys Acta. 1993;1164:173-178.
89. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994;54:4313-4320.
90. Singh SP, Janecki AJ, Srivastava SK, et al. Membrane association of glutathione S-transferase mGSTA4-4, an enzyme that metabolizes lipid peroxidation products. J Biol Chem. 2002;277:4232-4239.
91. Yang Y, Cheng JZ, Singhal SS, et al. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem. 2001;276:19220-19230.
92. Wolf CR. Metabolic factors in cancer susceptibility. Cancer Surv. 1990;9:437-474.
93. Board P, Coggan M, Johnston P, et al. Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacol Ther. 1990;48:357-369.
94. Clark AG, Smith JN, Speir TW. Cross specificity in some vertebrate and insect glutathione-transferases with methyl parathion (dimethyl p-nitrophenyl phosphorothionate), 1-chloro-2,4-dinitro-benzene and s-crotonyl-N-acetylcysteamine as substrates. Biochem J. 1973;135:385-392.
95. Seidegard J, Pero RW. The hereditary transmission of high glutathione transferase activity towards trans-stilbene oxide in human mononuclear leukocytes. Hum Genet. 1985;69:66-68.
96. Pearson WR, Vorachek WR, Xu SJ, et al. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet. 1993;53:220-233.
97. Seidegard J, Vorachek WR, Pero RW, et al. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A. 1988;85:7293-7297.
98. Widersten M, Pearson WR, Engstrom A, et al. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J. 1991;276:519-524.
99. Brockmoller J, Kerb R, Drakoulis N, et al. Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res. 1993;53:1004-1011.
100. McLellan RA, Oscarson M, Alexandrie AK, et al. Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol. 1997;52:958-965.
101. Bell DA, Taylor JA, Paulson DF, et al. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst. 1993;85:1159-1164.
102. Brockmoller J, Gross D, Kerb R, et al. Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione S-transferase class mu gene detected by polymerase chain reaction. Biochem Pharmacol. 1992;43:647-650.
103. Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett. 2000;112-113:357-363.
104. Deakin M, Elder J, Hendrickse C, et al. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis. 1996;17:881-884.
105. Strange RC, Matharoo B, Faulder GC, et al. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis. 1991;12:25-28.
106. Ahmad H, Wilson DE, Fritz RR, et al. Primary and secondary structural analyses of glutathione S-transferase pi from human placenta. Arch Biochem Biophys. 1990;278:398-408.
107. Harries LW, Stubbins MJ, Forman D, et al. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis. 1997;18:641-644.
108. Yengi L, Inskip A, Gilford J, et al. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res. 1996;56:1974-1977.
109. Nakachi K, Imai K, Hayashi S, et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 1993;53:2994-2999.
110. Zhong S, Howie AF, Ketterer B, et al. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis. 1991;12:1533-1537.
111. Rinderknecht E, Humbel RE. Polypeptides with nonsuppressible insulin-like and cell-growth promoting activities in human serum: isolation, chemical characterization, and some biological properties of forms I and II. Proc Natl Acad Sci U S A. 1976;73:2365-2369.
112. Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957;49:825-836.
113. Froesch ER, Buergi H, Ramseier EB, et al. Antibody-Suppressible and Nonsuppressible Insulin-Like Activities in Human Serum and Their Physiologic Significance. An Insulin Assay with Adipose Tissue of Increased Precision and Specificity. J Clin Invest. 1963;42:1816-1834.
114. Pierson RW, Jr., Temin HM. The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in cell culture and with non-suppressible insulin-like activity. J Cell Physiol. 1972;79:319-330.
115. Adams TE, Epa VC, Garrett TP, et al. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57:1050-1093.
116. Sasaoka T, Ishiki M, Wada T, et al. Tyrosine phosphorylation-dependent and -independent role of Shc in the regulation of IGF-1-induced mitogenesis and glycogen synthesis. Endocrinology. 2001;142:5226-5235.
117. You H, Zheng H, Murray SA, et al. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem. 2002;84:211-216.
118. Sasaoka T, Rose DW, Jhun BH, et al. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem. 1994;269:13689-13694.
119. Giorgetti S, Pelicci PG, Pelicci G, et al. Involvement of Src-homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-like-growth-factor-I-receptor. Eur J Biochem. 1994;223:195-202.
120. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J. 2000;19:3159-3167.
121. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98:285-294.
122. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349-352.
123. Rosato RR, Grant S. Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther. 2003;2:30-37.
124. Weidle UH, Grossmann A. Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res. 2000;20:1471-1485.
125. Arts J, de Schepper S, Van Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem. 2003;10:2343-2350.
126. Ripple GH, Wilding G. Drug development in prostate cancer. Semin Oncol. 1999;26:217-226.
127. Wolffe AP. Transcriptional control. Sinful repression. Nature. 1997;387:16-17.
128. Cairns BR. Emerging roles for chromatin remodeling in cancer biology. Trends Cell Biol. 2001;11:S15-21.
129. Glick RD, Swendeman SL, Coffey DC, et al. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res. 1999;59:4392-4399.
130. Patnaik A, Rowinsky EK, Villalona MA, et al. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin Cancer Res. 2002;8:2142-2148.
131. Kelly WK, Richon VM, O'Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003;9:3578-3588.
132. Fournel M, Trachy-Bourget MC, Yan PT, et al. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res. 2002;62:4325-4330.
133. Nemunaitis JJ, Orr D, Eager R, et al. Phase I study of oral CI-994 in combination with gemcitabine in treatment of patients with advanced cancer. Cancer J. 2003;9:58-66.
134. Archer SY, Hodin RA. Histone acetylation and cancer. Curr Opin Genet Dev. 1999;9:171-174.
135. Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13:477-483.
136. Rephaeli A, Rabizadeh E, Aviram A, et al. Derivatives of butyric acid as potential anti-neoplastic agents. Int J Cancer. 1991;49:66-72.
137. Siu LL, Von Hoff DD, Rephaeli A, et al. Activity of pivaloyloxymethyl butyrate, a novel anticancer agent, on primary human tumor colony-forming units. Invest New Drugs. 1998;16:113-119.
138. Batova A, Shao LE, Diccianni MB, et al. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood. 2002;100:3319-3324.
139. Kasukabe T, Rephaeli A, Honma Y. An anti-cancer derivative of butyric acid (pivalyloxmethyl buterate) and daunorubicin cooperatively prolong survival of mice inoculated with monocytic leukaemia cells. Br J Cancer. 1997;75:850-854.
140. Coffey DC, Kutko MC, Glick RD, et al. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 2001;61:3591-3594.
141. Aviram A, Zimrah Y, Shaklai M, et al. Comparison between the effect of butyric acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic cell line. Int J Cancer. 1994;56:906-909.
142. Zimra Y, Nudelman A, Zhuk R, et al. Uptake of pivaloyloxymethyl butyrate into leukemic cells and its intracellular esterase-catalyzed hydrolysis. J Cancer Res Clin Oncol. 2000;126:693-698.
143. Rabizadeh E, Shaklai M, Nudelman A, et al. Rapid alteration of c-myc and c-jun expression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS Lett. 1993;328:225-229.
144. Zimra Y, Wasserman L, Maron L, et al. Butyric acid and pivaloyloxymethyl butyrate, AN-9, a novel butyric acid derivative, induce apoptosis in HL-60 cells. J Cancer Res Clin Oncol. 1997;123:152-160.
145. James SJ, Basnakian AG, Miller BJ. In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res. 1994;54:5075-5080.
146. McCaffrey TA, Agarwal LA, Weksler BB. A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. In Vitro Cell Dev Biol. 1988;24:247-252.
147. Sadar MD, Gleave ME. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Cancer Res. 2000;60:5825-5831.
148. Dialyna IA, Miyakis S, Georgatou N, et al. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol Rep. 2003;10:1829-1835.
149. Chen CL, Liu Q, Relling MV. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics. 1996;6:187-191.
150. Kim WJ, Lee HL, Lee SC, et al. Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000;164:209-213.
151. Lu W, Xing D, Qi J, et al. Genetic polymorphism in myeloperoxidase but not GSTM1 is associated with risk of lung squamous cell carcinoma in a Chinese population. Int J Cancer. 20 2002;102:275-279.
152. Kote-Jarai Z, Easton D, Edwards SM, et al. Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenetics. 2001;11:325-330.
153. Kidd LC, Woodson K, Taylor PR, et al. Polymorphisms in glutathione-S-transferase genes (GST-M1, GST-T1 and GST-P1) and susceptibility to prostate cancer among male smokers of the ATBC cancer prevention study. Eur J Cancer Prev. 2003;12:317-320.
154. Winter DL, Hanlon AL, Raysor SL, et al. Plasma levels of IGF-1, IGF-2, and IGFBP-3 in white and African-American men at increased risk of prostate cancer. Urology. 2001;58:614-618.
155. Gnanapragasam VJ, McCahy PJ, Neal DE, et al. Insulin-like growth factor II and androgen receptor expression in the prostate. BJU Int. 2000;86:731-735.
156. Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8:718-728.
157. Nudelman A, Levovich I, Cutts SM, et al. The role of intracellularly released formaldehyde and butyric acid in the anticancer activity of acyloxyalkyl esters. J Med Chem. 24 2005;48:1042-1054.
158. Mariadason JM, Corner GA, Augenlicht LH. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000;60:4561-4572.
159. Fortier AH, Nelson BJ, Grella DK, et al. Antiangiogenic activity of prostate-specific antigen. J Natl Cancer Inst. 1999;91:1635-1640.
160. Fortier AH, Holaday JW, Liang H, et al. Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate. 2003;56:212-219.
161. Denmeade SR, Litvinov I, Sokoll LJ, et al. Prostate-specific antigen (PSA) protein does not affect growth of prostate cancer cells in vitro or prostate cancer xenografts in vivo. Prostate. 2003;56:45-53.
162. Migita T, Oda Y, Naito S, et al. The accumulation of angiostatin-like fragments in human prostate carcinoma. Clin Cancer Res. 2001;7:2750-2756.
163. Heidtmann HH, Nettelbeck DM, Mingels A, et al. Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. Br J Cancer. 1999;81:1269-1273.
164. Papadopoulos I, Sivridis E, Giatromanolaki A, et al. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin Cancer Res. 2001;7:1533-1538.
165. Butler LM, Agus DB, Scher HI, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 2000;60:5165-5170.