簡易檢索 / 詳目顯示

研究生: 曾柏誠
Po-Cheng Tseng
論文名稱: PEM燃料電池三維瞬態模式建立
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: PEM三維瞬態孔率影響統御方程式邊界條件
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對質子交換膜燃料電池(PEMFC)進行三維、瞬態數學模式建立。其中分別對PEMFC中的氣體通道、氣體擴散層、觸媒層及質子交換薄膜等不同區域推導建構連續方程式、動量方程式、能量方程式和成分方程式,並根據PEMFC上述不同區域之邊界特性,建立其邊界條件。
    由於PEMFC在實際操作條件下,內部流場、燃料濃度、及溫度分佈等都會呈現三維的變化,且隨著操作時間的改變,內部濕度、薄膜液態水的含量及流場也會呈現空間的改變。薄膜中液態水因為擴散力及電子遷移力的影響,導致在薄膜上的濕潤程度不均勻,所以能預測並做好水管理的工作,能有效延長薄膜的壽命。此外不同幾何形狀的流道會影響燃料在擴散層中的輸送,若流道形狀能加強氣體在擴散層中的對流能力,將有助於電池效能的提升。

    因此,基於上述理由,藉由本論文所建立之三維、瞬態數學模式,做為電腦程式模擬的依據,才能更精準預測PEM燃料電池的性能和行為。本論文即完成電腦輔助PEM燃料電池組系統設計之第一段階段性工作,並整理出修改本實驗室原有內燃引擎三維流場軟體(KIVA)所需修改部分。


    摘要…………………………………………………………………….Ⅰ 目錄……………………………………………………………..………Ⅱ 表目錄………………………………………………………………….Ⅲ 圖目錄………………………………………………………………….Ⅳ 參數定義…………………………………………………………….….Ⅴ 第一章 緒論…………………………………………………………….1 1-1 引言……………………………………………………………1 1-2 燃料電池的分類及基本介紹…………………………………2 1-3 文獻回顧……………………………………………………..4 1-4 研究目的………………………………………………………9 1-5 本文架構………………………………………………………9 第二章 PEM燃料電池說明及基本假設……………………………….11 1-1 模式說明……………………………………………………11 1-2 基本假設……………………………………………………11 第三章 數學模式………………………………………………………12 3-1 氣體通道內流場……………………………………………13 3-2 氣體擴散層內流場………………………………………….16 3-3 質子交換膜內流場………………………………………….24 3-4 觸媒層內流場……………………………………………….28 第四章 結果與討論……………………………………………………36 第五章 結論與建議…………………………………………………….41 參考文獻……………………………………………………………….45

    1.Kazim A., “Investigation on Proton Exchange Membrane Fuel Cells with Different Configurations and Flow Fields”, Ph.D. Thesis, University of Miami, 1998.
    2.“高分子薄膜燃料電池電腦模擬研究”,燃料電池技術研究計畫,能源研究發展基金研究報告,八十七年度工作總報告.
    3.Escudero M.J, Hontanon E., Bautista C., Garcia-Ybara P.L., and Daza L., “Optimization of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques”, Journal of Power Sources, p.p.363-368, 1999.
    4.Dutta s., Shimpalee S. and Van Zee J.W., “Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells”, Journal of Applied Electrochemistry, 30, p.p. 135-146, 2000.
    5.Amphlett J. C., Mann R. F., Peppley B. A., P. R., and Rodrigues A., “A Pratical PEM Fuell Cell Model for Simulating Vehicle Power Sources”, Battery Conference on Applications and Advances, Proceeding of the 10th Annual, p.p. 221-226, 1995.
    6.Gurau V., “Two Dimensional Mathematical Model and Simulation of The Transport Processes and Cell Performance of Proton Exchange Membrane Fuel Cells”, Ph.D. Thesis, University of Miami, 1998.
    7.Dagan G., “Flow and Transport in Porous Formations”, Springer-Verlag, 1989.
    8.Sui P.-C., Chen L.-D., Seaba J. P., Yoshinori Wariishi, “Modeling and Optimization of a PEMFC Catalyst Layer”, SAE 010539, 1999.
    9.Ekdunge P., Broka K., “Modeling the PEM Fuel Cell Cathode”, J. Appl. Electrochem., 27, p.p. 281,1997.
    10.Bernardi D. M., Verburgge M. W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte”, AlChE J., 37, p.p. 1151, 1991.
    11.Singh D., Lu D.M., and Djilali N., “A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cell”, International Journal of Engineering Science, p.p. 431-452,1998.
    12.Hsing I.M., Futerko P., “Two-Dimensional Simulation of Water Transport in Polyner Electrolyte Fuel Cell”, Chemical Engineering Science, p.p.4209-4218, 2000.
    13.Bernardi D. M., Verburgge M. W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., 9, p.p. 2477,1992.
    14.Fuller T. F., Newman J., “Water and Thermal Management in Soild-Polymer-Electrolyte Fuel cells”, J. Electrochem. Soc., 140, p.p. 1218, 1993.
    15.Nguyen T. V., White R. E., “A water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells”, J. Electrochem. Soc., 140, p.p. 2178, 1993.
    16.Lee J.H., Lalk T.R., Appleby A.J., “Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks”, Journal of Power Sources, p.p.258-268, 1998.
    17.Marr C., Li X., “An Engineering Model of Proton Exchange Membrane Fuel Cell Performance”, ARI, Springer-Verlag, p.p190-200, 1998.
    18.Ohl G. L., Stein J. L., and Smith G. E., “Fundamental Factors in the Design of a Fast-Responding Methanol-to-Hydrogen Steam Reformer for Transportation Applications”, Transaction of the ASME, vol. 118, p.p. 112-116, 1996.
    19.Dagan G., “The Generalization of Darcy’s Law for Non-uniform Flows”, Water Resources Research, 15, p.p. 1, 1979.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE