簡易檢索 / 詳目顯示

研究生: 羅文妙
Wen-Miao Lou
論文名稱: 利用吹氣試驗量測金屬薄膜受氫氣影響導致機械性質之改變
USE OF THE BULGE TEST IN MEASURING THE MECHANICAL PROPERTIES CHANGE OF METAL FILMS INDUCED BY HYDROGEN
指導教授: 蔡哲正
Cho-Jen Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: 吹氣試驗機械性質薄膜
外文關鍵詞: bulge test, mechanical property, thin film
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積體電路與微機電元件中,薄膜的機械性質佔著舉足輕重的重要性,近年來人們利用一些方法量測薄膜的機械性質。吹氣試驗是其中一種方式,它所使用的設備簡易,而且實驗所得到的資訊也相當豐富。利用Vlassak等人推導的吹氣試驗公式,經由曲線擬合得到一組殘餘應力、起始高度與雙軸模數的解。利用微機械製作的方式在矽晶片上製備懸浮薄膜試片,再以麥克森干涉儀量測薄膜受吹氣鼓起的高度,再將高度對應壓力的曲線經由曲線擬合的方式可知薄膜機械性質,其中試片尺寸量測對實驗解的精確度影響很大。在本論文中,我們利用吹氣試驗量測SiNx, Pt/Ti/SiNx 和 Pd/Ti/SiNx薄膜受氫氣影響所導致的機械性質改變。
    在實驗中所用的環境氣氛包含純氬氣、5%、10%和20%氫氣。改變氫氣濃度,對Pt/Ti/SiNx的殘餘應力與彈性係數並沒有明顯的影響。但增加氫氣濃度,使Pd/Ti/SiNx薄膜的彈性係數降低。而氫原子進入Pd/Ti,使金屬膜體積膨脹而SiNx卻限制住薄膜,因此Pd/Ti/SiNx薄膜在未施壓時即有一個明顯的起始高度,並使其殘餘應力變為負值。若除去SiNx的效應,在10%和20%氫氣中Pd/Ti薄膜的彈性係數為負值。如何解釋彈性係數出現負值,SiNx是否與氫氣反應需要再探討,而在本實驗中,氫氣對金屬反應的系統,無論在實驗上與理論上的實驗分析方法的精確性,需要再檢驗與探討。


    In ULSI technology, MEMS devices, and wear-resisting coating, the films created a strong interest in mechanical properties. Several methods are used to measure the mechanical properties of thin films. Bulge test has a great virtue is that the relatively simplicity of the apparatus. Thus, we use bulge test to measure the mechanical property changes of Pt/Ti/SiNx and Pd/Ti/SiNx membranes induced by hydrogen.
    Based on exact solution described by Vlassak, the curve fitting method is used in the work to obtain a set of residual stress, initial height, and biaxial modulus. The specimen geometry has a tremendous influence on accuracy. Micromachining techniques using Si substrate apply to fabricate the bulge samples of free-standing substrate. The Michelson interferometry is used to measure the deflection of the membrane as pressure loading. In our works, bulge test experiment is preformed on SiNx, Pt/Ti/SiNx and Pd/Ti/SiNx films to obtain the curve of pressure versus deflection of center of the membrane. By curve fitting method, residual stress, biaxial modulus and initial height are acquired.

    The ambient gas are Ar, 5 % H2, 10 % H2, and 20 % H2. Varying H2 concentration, the residual stress and modulus of Pt/Ti/SiNx does not alter apparently. As H2 concentration increases, the residual stress of Pd/Ti/SiNx membrane abruptly decreases to minus values. Hydrogen adsorption in metals causes the volume expansion, and the SiNx restricts the metals. Thus, a significant initial height exists and residual stress has minus values. The elastic constant of Pd/Ti/SiNx membrane decreases as H2 concentration increases. While the elastic constant subtract effect of SiNx, minus values appear in 10 % H2, and 20 % H2. Whether the SiNx film interacts with hydrogen need to be concerned. The accuracy of the results from the data analysis needs further examination experimentally and theoretically.

    ABSTRACT 0 TABLE OF CONTENTS 1 CHAPTER 1: INTRODUCTION 3 1.1 INTRODUCTION TO THIN FILMS 3 1.2 MECHANICAL TESTING TECHNIQUES FOR THIN FILMS 4 MICROTENSILE TEST 4 WAFER CURVATURE MEASUREMENT 5 CANTILEVER BEAM TEST 5 X-RAY DIFFRACTION 6 NANOINTENTATION 6 BULGE TEST 7 SUMMARY 7 CHAPTER 2: THE BULGE TEST - MEASUREMENT FOR MECHANICAL PROPERTIES OF THIN FILMS 8 2.1 INTRODUCTION 8 2.2 NOMENCLATURE 8 2.3 SPHERICAL MEMBRANE EQUATIONS 9 2.3.1 SPHERICAL MEMBRANE EQUATIONS FOR AN INITIALLY FLAT, UNSTRESSED FILM 9 2.3.2 MODIFICATIONS OF SPHERICAL MEMBRANE EQUATIONS FOR INITIAL CONDITIONS 12 2.4 ENERGY-MINIMIZATION SOLUTION FOR A CIRCULAR MEMBRANE 13 2.5 EXACT SOLUTION FOR THE DEFLECTION OF A PRESSURIZED CIRCULAR MEMBRANE 17 INFLUENCE OF BENDING STIFFNESS 20 NONCIRCULAR GEOMETRY: SQUARE MEMBRANE 21 2.6 CONCLUSION 21 CHAPTER 3: SYSTEM FOR BULGE TEST 22 3.1 BULGE TEST APPARATUS 22 THE APPARATUS 22 3.2 INTERFEROMETRY 26 ALIGNMENT PROCEDURE: 28 3.3 SAMPLE PREPARATION 34 NITRIDE ETCH STOP DEPOSITION 36 ROLE OF RESIDUAL STRESS 37 PHOTOLITHOGRAPHY 37 REACTIVE ION ETCHING 39 ANISOTROPIC WET ETCHING 39 WET ETCHING PROCEDURE 40 CLEAVING AND MOUNTING 41 CHAPTER 4: EXPERIMENTAL ANALYSIS 42 4.1 MOTIVATION 42 4.2 EXPERIMENTAL ANALYSIS 42 4.3 UNCERTAINTY ON THE CURVE FITTING 51 4.4 CONCLUSION 55 REFERENCE 56 APPENDIX A: THE PINS OF THE OBJECTS 62 APPENDIX B: THE CIRCUITS OF THE POWER BOX 63 APPENDIX C: THE RESULTS FOR BULGE TEST 64 THE RESULTS FOR SINX FILM 64 THE RESULTS FOR PD/TI/SINX FILM 65 THE RESULTS FOR PD/TI/SINX FILMS 67 SAMPLE #1 67 SAMPLE #2 69 SAMPLE #3 71

    1-1. A. Maier-Schneider, S. Korprululu, E. Ballhausen Holm, and J. Obermeier, Micromech. Microeng. 6, 436 (1996).
    1-2. P. Yashar, S.A. Barnet, J. Rechner, and W. D. Sproul, J. Vac. Sci. Tech. A. 16, 2913 (1998).
    1-3. Joost Johan Vlassak, Ph. D dissertation, Stanford University (1994).
    1-4. Stanley Wolf, Silicon Processing for VLSI Era Lattice Press, Sunset Beach, CA, (1990).
    1-5. D. S. Gardner and P. A. Flinn, in Thin Films: Stresses and Mechanical Properties, Proc. Materials Research Society, 130, 69 (1989).
    1-6. W. D. Nix, Met. Trans. A 20, 2217 (1989).
    1-7. Haibo Huang and F. Spaepen, Acta metar. 48, 3261 (2000).
    1-8. R. P. Vinci and J. J. Vlassak, Annu. Rev. Mater. Sci. 26 431 (1996).
    1-9. M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, J. Appl. Phys. 86 4936 (1999).
    1-10. B. M. Davis, D. N. Seidman, A. Moreau, J. B. Ketterson, J. mattson, M. Grimsditch, Phys. Rev. B 43, 9304 (1991).
    1-11. Arzt, E., Acta metar. 46, 5611 (1998).
    1-12. W. M. C. Yang, T. Tsakalakos, and J. E. Hillard, J. Appl. Phys. 48, 876 (1977).
    1-13. D. Baral, J. B. Ketterson, and J. E. Hillard, J. Appl. Phys. 57, 1076 (1985).
    1-14. G. E. Henein, J. E. Hillard, J. Appl. Phys. 54 728 (1983).
    1-15. R. C. Cammarata, T. E. Schlesinger, C. Kim, S. B. Qadri, A.S. Edelstein, Appl. Phys. Lett. 56, 1862 (1990).
    1-16. D. A. Hardwick, Thin Solid Films 154, 109 (1987).
    1-17. Davis T. Read, Meas. Sci. Tech. 9, 676 (1998).
    1-18. D. Heinen, H. G. Bohn, W. Schilling, J. Appl. Phys. 77, 3742 (1995).
    1-19. C. T. Rosenmayer, F. R. Brotzen and R. J. Gale, in Thin Films: Stresses and Mechanical properties, Proc. Materials research society, Vol. 130, p.77 (1989).
    1-20. J. Ruud, D. Josell, A. L. Greer and F. Spaepen, in Thin Films: Stresses and Mechanical propertiesⅢ, Proc. Materials research society, Vol. 239, p.239 (1992).
    1-21. Hoo-Jeong Lee, Guido Cornella, and John C. Bravman, Appl. Phys. Lett. 76, 3415 (2000)
    1-22. R. W. Hoffman, in Physics of Thin Films. Vol. 3., p. 211 (1996).
    1-23. J. A. Ruud, D. Josell, and F. Spaepen, A. L. Greer, J. Mat. Res. 8. 112 (1996)
    1-24. David T. Read, James W. Dally, J. Mat. Res., 8. 1542 (1996).
    1-25. H. Huang, F. Spaepen, Mater. Res. Soc. Symp. Proc., 405, 501 (1996).
    1-26. Donald S. Gardner, Paul A. Flinn, J. Appl. Phys. 67, 1831 (1990).
    1-27. J. A. Floro, E. Chason, S. R. Lee, Mar. Res. Soc. Symp. Proc. 405, 381 (1996).
    1-28. H. E. Inglefield, G. Bochi, C. A. Ballentine, R. C. O’handley, C. V. Thomson, Mar. Res. Soc. Symp. Proc. 405, 265 (1996).
    1-29. Alison L. Shull, Howard G. Zolla, F. Speapen, Mar. Res. Soc. Symp. Proc. 356, 345 (1995).
    1-30. B. M. Clemens, W. D. Nix, V. Ramaswamy, J. Appl. Phys., 87, 2816 (2000).
    1-31. Veronique T. Gillard, W. D. Nix Mar. Res. Soc. Symp. Proc. 356, 283 (1995).
    1-32. Alison L. Shull, F. Speapen, J. Appl. Phys., 80, 6243 (1996).
    1-33. Paul A. Flinn, Mar. Res. Soc. Symp. Proc. 130, 41 (1989).
    1-34. T. P. Leervad Pedersen, C. Salinga, H. Weis, W. Wuttig, J. Appl. Phys. 93, 6034 (2003).
    1-35. T. P. Weihs, S. Hong, J. C. Braveman, W. D. Nix, Mar. Res. Soc. Symp. Proc., 130, 87 (1989).
    1-36. S. Hong, T. P. Weihs, J. C. Braveman, W. D. Nix, Mar. Res. Soc. Symp. Proc., 130, 93 (1989).
    1-37. J. Koskiken, H. H. Johnson, Mar. Res. Soc. Symp. Proc., 130, 63 (1989).
    1-38. Reinhard Abermann, Mar. Res. Soc. Symp. Proc., 239 25 (1992).
    1-39. S. Hong, Ph.D. Dissertation, Stanford University (1991).
    1-40. S. P. Baker, M. K. Small, J. J. Vlassak, B. J. Daniels, W. D. Nix, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures (1992).
    1-41. Carla J. Sfute, J. B. Cohen, D. A. Jeannotte Mar. Res. Soc. Symp. Proc., 130, 29 (1989).
    1-42. O. S. Leung, A. Munkhlm, W. D. Nix, J Appl. Phys. 88, 1389 (2000).
    1-43. G. Cornella, S.H. Lee W. D. Nix, J. C. Braveman, Appl. Phys. Lett. 71, 2949 (1997)
    1-44. A. Leiberich, P. K. Roy Mar. Res. Soc. Symp. Proc., 239, 87 (1992).
    1-45. T. Vreeland., JR.A. Dommann, C. J. Tsai, M. A. Nicolet, Mar. Res. Soc. Symp. Proc., 130, 3 (1989)
    1-46. B. S. Boos, H. Richter, T. Morgenstern, B. Tillack, Res. Soc. Symp. Proc. 356, 277 (1995).
    1-47. G. R. English, G. F. Simenson, B. M. Clemens, W. D. Nix, Res. Soc. Symp. Proc. 356, 363 (1995).
    1-48. M. F. Doerner, D. S. Gardner, W. D. Nix, J. Mater Res. 1, 601 (1996).
    1-49. W. C. Oliver, G. M. Pharr, J. Mater Res. 7, 1564 (1996).
    1-50. D. S. Stone, T. W. Wu, P. S. Alexopoulos, W. R. Lafontaine, Res. Soc. Symp. Proc., 130, 105 (1989).
    1-51. R. S. Saha, W. D. Nix, Acta Mater. 50, 23 (2002).
    1-52. G. M. Pharr, W. C. Pliver, F. R. Brotzen, J. Mater Res. 7, 613 (1996).
    1-53. M. J. Mayo, R.W. Siegel, Y. X. Liao, W. D. Nix, Brotzen, J. Mater Res. 7, 973 (1996).
    1-54. H. E. Boyer, ed., Hardness Testing (ASM International, Metals Park, OH, 1987).
    1-55. L. J. Farthing, T. P. Weihs, D. W. Kisker, J. J. Krajewski, M. F. Tang and D. A. Stevenson, Res. Soc. Symp. Proc., 130,123 (1989).
    1-56. J.M. Beams, Structure and properties of thin films, p.183 (1959).
    1-57. T. Tsakalakos, Thin solid Film, 75, 293 (1981).
    1-58. J. J. Vlassak, W. D. Nix, J. Mater. Res., 7, 3242 (1992).
    2-1. Robert J. Hohlfelder, Ph.D. dissertation, Stanford University (1998).
    2-2. J. W. Beams, Structure and Properties of Thin Films, Proc. John Wiley and Sons, Inc. (1959)
    2-3. S. Timoshenk and S. Woinowsky-Krieger, in Theory of Plates and Shells. McGraw Hill, New York. (1959).
    2-4. Martha Kennedy Small, Ph.D. dissertation, Stanford University (1992).
    2-5. J. J. Vlassak, Ph. D dissertation, Stanford University (1994).
    3-1. Frank L. pedrotti, S.J., Leno S.Pedrotti “ Introduction to Optics,” 2nd edition (Prentice Hall, Englewood Cliffs, New Jersey 07632,1993)
    3-2. The image process tool is developed by Yen-Lin Chen in NCHU.
    3-3. M.G..Allen and S.D.Senturia, Microfabricated structures for the measurement of adhesion and mechanical properties of polymer films Proc. ACS Division of Polymeric MS&E 56, 735-739 (1987).
    3-4. Pinyen Lin, Ph.D. dissertation, Massachusetts Institute of Technology, 1990.
    3-5. J.J.Vlassak and W.D.Nix, J. Mater. Res., 7, 3242 (1992).
    3-6. Martha K Small, Ph.D. dissertation, Stanford University (1992).
    3-7. Walter Lang, Materials Science and Engineering, R17, 1 (1996)
    3-8. Robert Hohlfelder, Ph.D dissertation, Stanford University (1998).
    3-9. Stanley Wolf, Silicon processing for the VLSI era (Lattice press, Sunset beach, CA, 1990).
    4-1. Hydrogen in Metals Ⅰ: Basic Properties, edited by G. Alefeld and J. Völki, Springer-Verlag, New York (1978).
    4-2. Hydrogen in Metals Ⅱ: Application-Oriented Properties, edited by G. Alefeld and J. Völki, Springer-Verlag, New York (1978).
    4-3. Hydrogen in Metals Ⅲ: Properties and Applications, edited by G. Alefeld and J. Völki, Springer-Verlag, New York (1995).
    4-4. T. J. Richardson, J. L. Slack, R. D. Armitage, R. Kostecki, and M. D. Rubin, Appl. Phys. Lett., 78, 3047 (2001).
    4-5. P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett., 70, 997 (1997).
    4-6. Joost Johan Vlassak, Ph.D. dissertation, Stanford University (1992).
    4-7. Preparation of cross-section sample and examination of TEM images both are produced by H. J. Hau
    4-8. Martha Kenney Small, Ph.D. thesis, Stanford University (1992).
    4-9. G.W.C. Kaye and T.H. Laby, Tables of physical and chemical constants, Longman, London, UK, 15th edition (1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE