研究生: |
劉康港 Liu, Kang-Gang |
---|---|
論文名稱: |
Flat Sp(n)-Connections的模空間 Moduli Space of Flat Sp(n)-Connections |
指導教授: |
何南國
Ho, Nan-Kuo |
口試委員: |
江孟蓉
Chiang, River 高淑蓉 Kao, Shu-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 22 |
中文關鍵詞: | 模空間 、連絡 、緊緻李群 |
外文關鍵詞: | Moduli space, Flat connections, compact Lie group, principal G-bundle, Atiyah-Bott, Narasimham- Seshadri |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文包含了兩個部分。在第一個部分,我們將會提及經典的結果,即一個 principal U (n)-bundle 上的 flat connections 的模空間與向量叢上的 flat connections 的模空間。更深入地說,當向量叢上具備一個 Hermitian 結構 h ,且該向量叢上的 flat connections 是與 h 相容的,則在上述的兩個模空間存在一個一對一對應。
在第二部分,我們將結構群改為 Sp(n),並試著找到一個條件,建構出與上述的情況類似的結果。為了達成這一點,我們必須先處理一個問題:怎麼樣的向量叢會與 principal Sp(n)-bundle 對應?大致上地說,該向量叢除了要有 Hermitian 結構外,還需要是所謂的 “symplectic”。至於在連絡(connections)的層次上,一個 flat Sp(n)-connection,在我們的結果下,可以對應到一個向量叢上與 h 相容的,並且滿足一些與 symplectic 結構有特定關係的連絡。
This thesis consists of two parts. In the first part, we recall the classical result on the relation between the moduli space of flat connections over a principal U (n)-bundle and the moduli space of flat connections over a vector bundle. In particular, there is an one-to-one correspondence when the vector bundle has a Hermitian structure h and the flat connections on it are compatible with h.
In the second part, we try to find the precise condition when the structure group of the principal bundle is Sp(n), the (compact) symplectic group. To accomplish that, we need to deal with the question: What kind of complex vector bundle E can correspond to a principal S p (n)-bundle? Roughly speaking, the vector bundle need to be Hermitian and “symplectic”. As for the connection level, a flat Sp(n)-connection can correspond to the connection which is h-compatible and satisfies some relation with the symplectic structure.
[1] M. F. Atiyah and R. Bott. The yang-mills equations over riemann surfaces. Royal Society, 308(1505):523-615, Mar 1983.
[2] M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact riemann surface. Annals of Mathematics, 82(3):540-567, Nov. 1965.
[3] S. Kobayashi. Differential Geometry of Complex Vector Bundles. Princeton Uni- versity Press, 1987.
[4] D. Huybrechts. Complex Geometry: An Introduction. Springer-Verlag Berlin Hei- delberg, 2008.
[5] Chris Wendl. Lecture notes on bundles and connections. Humboldt-Universität zu Berlin, 2008.
[6] S. A. Mitchell. Notes on principal bundles and classifying spaces. 2001.
[7] C. H. Taubes. Differential Geometry: Bundles, Connections, Metrics and Curvature. Oxford University Press Inc., 2011.
[8] D. McDuff and D. Salamon. Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, edition, 1995.
[9] B. C. Hall. Lie Groups, Lie Algebras, and Representations. Springer International Publishing, 2 edition, 2015.