研究生: |
旦 克 Thangapandian Murugesan |
---|---|
論文名稱: |
製備有機化合物(聚苯胺或金屬有機框架)和金奈米粒子修飾之交錯氧化鋅奈米柱及應用於高靈敏度二氧化氮與臭氧氣體感測 Fabrication of Interlinked ZnO Nanorods Modified with Organic Compound (Polyaniline or Metal-Organic Framework) and Au Nanoparticles for Highly Sensitive NO2 and O3 Gas Sensing |
指導教授: |
林鶴南
LIN, HEH-NAN |
口試委員: |
廖建能
LIAO, CHIEN-NENG 呂明諺 LU, MING-YEN 許鉦宗 SHEU, JENG-TZONG 冉曉雯 ZAN, HSIAO-WEN |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 氣體傳感 、環境監測 |
外文關鍵詞: | Gas Sensing, Environmental Monitoring |
相關次數: | 點閱:73 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前氣體感測研究方向主要在開發低操作溫度、高成本效益且高性能的氣體感測器,因此研究人員著重於如何提高氣體感測器的功能性和便攜性。本論文描述了用於分析二氧化氮(NO2)和臭氧(O3)的多重氣體感測器的設計、製作和特性,以有機化合物(聚苯胺(PANi)或金屬有機框架)和金(Au)奈米粒子(NPs)修飾交錯生長的氧化鋅(ZnO)奈米柱(NRs),實現在紫外光活化模式下高靈敏度NO2和O3氣體感測。
氧化鋅是一種典型的n型半導體,常在室溫下做為化學電阻式氣體感測材料。本研究利用水熱法,在預先定義好電極圖案的矽基板上,生長均勻且交錯的ZnO NRs,應用於紫外光活化NO2和O3氣體感測。ZnO NRs的直徑約為100 nm,長度為2 μm。對NO2感測,在NO2濃度為0.5 ppm時平均響應值約為180%,低濃度線性靈敏度為5.37 ppm−1,此線性範圍僅在NO2濃度0.5 ppm以下時成立。對O3感測,在O3濃度為0.5 ppm時平均響應值約為50%,線性靈敏度為1.0 ppm−1。此ZnO NRs的響應可歸因於存在許多可充當吸附位點的氧空缺。
通過簡單的修飾,如組合金屬氧化物與金屬氧化物、有機材料或者貴金屬奈米粒子等等,就可以提高氧化鋅的氣體感測性能,而在ZnO NsR中加入導電聚合物PANi是一種可行的方法。本研究使用滴落塗佈(drop-casting)製作PANi/ZnO 0.5奈米復合材料,在場發射電子顯微鏡(FE-SEM)觀測下,呈現均勻的表面形貌。對NO2和O3氣體感測,在NO2濃度為0.5 ppm時平均響應值約為6440%,低濃度線性靈敏度為117 ppm−1。由Langmuir吸附模型,可算出吸附和脫附常數分別為7.65×10−3 ppm−1 s−1和1.07×10−2 s−1。在O3濃度為0.5 ppm時平均響應值約為1260%,線性靈敏度為27.1 ppm−1。此PANi/ZnO 0.5奈米復合材料的優異氣體感測性能,可歸因於豐富的p-n異質接觸吸附位點的形成。該感測材料對NO、NH3、C3H6O和C2H5OH等其他氣體的感測實驗中,展現了對NO2以及O3氣體的高度選擇性。此外也做了其他重要量測,如一個月穩定性測試、濕度測試(於20% ~ 80% 相對濕度)和NO2的場域環境監測等。
之後以Au NPs對PANi/ZnO 0.5進行修飾並對NO2和O3進行感測。從FE-SEM中可看到Au NPs僅出現在ZnO NRs上,所有相關的元素均可在能量色散X-射線光譜(EDS)被觀察到。在NO2濃度為0.5 ppm時平均響應值約為750%,在O3濃度為0.5 ppm時平均響應值約為610%,相比PANi/ZnO而言明顯較低,顯示Au NPs添加不是一個有效提升NO2和O3氣體感測的方法。
另一種提高氧化鋅氣體感測性能的方法是製作核殼(core-shell)異質結構。本研究以表面轉化反應,將沸石酸鹽咪唑酯骨架-8(ZIF-8)生成於ZnO NRs上,形成核殼異質結構,最後添加Au NPs形成ZnO@3ZIF-8/Au。其對NO2濃度為0.5 ppm時,平均響應值約為2980%,並實現了95.1 ppm−1的優秀線性靈敏度。此外ZnO NRs在添加了ZIF-8後,線性動態範圍至少擴展8倍,而Au NPs修飾帶來了12倍的靈敏度提升。該感測材料對O3、NO、NH3、C3H6O和C2H5OH等其他氣體感測實驗中,展現了對NO2氣體的高度選擇性。另外也做了其他重要量測,如一個月穩定性測試、濕度測試(於20% ~ 80% 相對濕度)和NO2的場域環境監測等。
基於以上兩種感測器的感測數據,證實了兩種製程均能有效提高ZnO NRs氣體感測表現,而PANi/ZnO 0.5與ZnO@3ZIF-8/Au也都適合用做環境氣體感測的奈米複合材料。
Current research on gas sensing is focused toward developing cost-effective and high-performance gas sensors at low operating temperature. Researchers are increasingly interested in enhancing the functionality and portability of gas sensors. This thesis describes the research that involves the design, fabrication, and characterization of hybrid gas sensors for the analysis of nitrogen dioxide (NO2) and ozone (O3) gases. Interlinked ZnO nanorods (NRs) are modified with organic compound (polyaniline (PANi) or metal-organic framework) and Au nanoparticles (NPs) for highly sensitive NO2 and O3 sensing under UV-activation.
ZnO is a typical n-type semiconductor and has been chosen as the template for chemoresistive gas sensing at room temperature. Uniform and interlinked ZnO NRs are grown on a pre-patterned silicon substrate by using a hydrothermal method. The morphology of the ZnO NRs is investigated by field emission scanning electron microscopy (FE-SEM). A typical diameter of the ZnO NRs is 100 nm and a length is 2 μm. The interlinked ZnO NRs are used for NO2 and O3 gas sensing under UV-activation. For NO2 sensing, the average response is around 180% at 0.5 ppm NO2 and the low concentration linear sensitivity is 5.37 ppm–1. The linear range exists only below 0.5 ppm NO2. For O3 sensing, the average response is around 50% at 0.5 ppm O3 and a linear sensitivity is 1.0 ppm–1. The obtained response of the ZnO can be attributed to the presence of more oxygen vacancies that act as adsorption sites.
The gas sensing performance of the ZnO NRs can be improved by forming a nanocomposite. One feasible approach is to infuse an easily processable conducting polymer such as PANi into ZnO NRs. A PANi/ZnO 0.5 nanocomposite with uniform morphology is obtained by drop-casting a PANi solution on the ZnO NRs. The uniform morphology is confirmed by the FE-SEM images. The PANi/ZnO 0.5 nanocomposite is used for NO2 and O3 gas sensing. For NO2 sensing, the average response is around 6440% at 0.5 ppm NO2 and the low concentration linear sensitivity is 117 ppm–1. Based on the Langmuir adsorption model, the adsorption and the desorption constants are determined to be 7.65 × 10–3 ppm–1 s–1 and 1.07 × 10–2 s–1, respectively. For O3 sensing, the average response is 1260% at 0.5 ppm O3 and a linear sensitivity is 27.1 ppm–1. The excellent gas sensing performance of the PANi/ZnO 0.5 nanocomposite is attributed to the formation of abundant p-n heterojunction adsorption sites. The sensor is also highly selective toward NO2 and O3 gas against other gases including NO, NH3, CH2O, C2H5OH, and CH3OH. Furthermore, other significant measurements such as the humidity test (between 25% and 80% RH), a one-month stability test, and one-month environmental monitoring data results have been studied for the PANi/ZnO 0.5 nanocomposite.
Additionally, Au NPs are decorated on the PANi/ZnO 0.5 nanocomposite and used as a sensing material for NO2 and O3 gases. The Au NPs are decorated only on the protruded ZnO NRs, which can be observed from the FE-SEM images. All corresponding elements are confirmed by an energy-dispersive X-ray spectroscopy (EDS) spectrum of the Au/PANi/ZnO 0.5 nanocomposite. The obtained average response is around 750% at 0.5 ppm NO2 and 610% at 0.5 ppm O3 gas. The obtained responses are much lower in comparison with PANi/ZnO 0.5 nanocomposite. The decoration of Au NPs on the PANi/ZnO nanocomposite is not an effective approach for NO2 and O3 gas sensing.
Another feasible approach to improve the gas sensing performance of ZnO is creating a core-shell heterostructure. Large-area interlinked ZnO NRs are first grown and zeolitic imidazolate framework-8 (ZIF-8) shells are subsequently formed on ZnO via a surface conversion reaction. Au NPs are finally decorated and ZnO@3ZIF-8/Au NRs are produced. The average response is around 2980% at 0.5 ppm NO2 and an excellent linear sensitivity of 95.1 ppm–1 has been achieved. The linear dynamic range is extended by at least 8 times after ZIF-8 addition and the sensitivity is enhanced by 12 times after Au NP decoration. The sensor is also highly selective toward NO2 gas against other gases including O3, NO, NH3, C3H6O, and C2H5OH. Furthermore, other significant measurements including the humidity test (between 20% and 80% RH), a one-month stability test, and one-month environmental monitoring data results have been studied.
Based on the performance of the two gas sensors, namely PANi/ZnO 0.5 and ZnO@3ZIF-8/Au, it can be concluded that the two different approaches can effectively improve gas sensing performance of ZnO NRs. These nanocomposites are thus promising materials for environmental gas sensing.
1. C.O. Muller, H. Yu, B. Zhu, Ambient Air Quality in China: The Impact of Particulate and Gaseous Pollutants on IAQ, Procedia Eng. 121 (2015) 582589.
2. S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: Materials and technologies, Sensors International 2 (2021) 100116.
3. M. Lenner, Nitrogen dioxide in exhaust emissions from motor vehicles, Atmos. Environ. 21 (1987) 3743.
4. D.C. Carslaw, S.D. Beevers, M.C. Bell, Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide, Atmos. Environ. 41 (2007) 20732082.
5. P. Achakulwisut, M. Brauer, P. Hystad, S.C. Anenberg, Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets, Lancet Planet Health 3 (2019) e166e178.
6. G. Korotcenkov, V. Brinzari, B.K. Cho, In2O3- and SnO2-based Ozone Sensors: Design and Characterization, Crit. Rev. Solid State Mater. Sci. 43 ( 2018) 83132.
7. J.F. da Silveira Petruci, D.N. Barreto, M.A. Dias, E.P. Felix, A.A. Cardoso, Analytical methods applied for ozone gas detection: A review, TrAC, Trends Anal. Chem. 149 (2022) 116552.
8. E. Espid, F. Taghipour, UV-LED Photo-activated Chemical Gas Sensors: A Review, Crit. Rev. Solid State Mater. Sci. 42 (2017) 416–432.
9. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review, Sens. Actuators B 204 (2014) 250–272.
10. A.P. Dral, J.E. Ten Elshof, 2D metal oxide nanoflakes for sensing applications: Review and perspective, Sens. Actuators, B 272 (2018) 369392.
11. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature, Mater. Horiz. 6 (2019) 470506.
12. N. Kaur, M. Singh, E. Comini, One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 36 (2020) 63266344.
13. P.J.P. Espitia, N.D.F.F. Soares, J.S.D.R. Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications, Food Bioprocess Technol. 5 (2012) 14471464.
14. S.I. Abd Razak, I.F. Wahab, F. Fadil, F.N. Dahli, A.Z. Md Khudzari, H. Adeli, A review of electrospun conductive polyaniline-based nanofiber composites and blends: Processing features, applications, and future directions, Adv. Mater. Sci. Eng. 2015 (2015) 356286.
15. I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: A mini review, Sens. Actuators, B 220 (2015) 534548.
16. J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Nanostructured polyaniline sensors. Chem. Eur. J. 10 (2004) 13141319.
17. S. Jain, N. Karmakar, A. Shah, N.G. Shimpi, Development of Ni doped ZnO/polyaniline nanocomposites as high response room temperature NO2 sensor, Mater. Sci. Eng. B 247 (2019) 114381.
18. T. Murugesan, R.R. Kumar, A.k. Anbalagan, C.-H. Lee, H.-N. Lin, Interlinked polyaniline/ZnO nanorod composite for selective NO2 gas sensing at room temperature, ACS Appl. Nano Mater. 5 (2022) 4921–4930.
19. R.R. Kumar, T. Murugesan, A. Dash, C.-H. Hsu, S. Gupta, A. Manikandan, A.k. Anbalagan, C.-H. Lee, N.-H. Tai, Y.-L. Chueh, H.-N. Lin, Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study, Appl. Surf. Sci. 536 (2021) 147933.
20. H. Badr, I.S. El-Mahallawi, F.A. Elrefaie, N.K. Allam, Low-temperature thermoelectric performance of novel polyaniline/iron oxide composites with superior Seebeck coefficient, Appl. Phys. A: Mater. Sci. Process. 125 (2019) 18.
21. J. Singh, A.P. Bhondekar, M.L. Singla, A. Sharma, Facile route for the synthesis of a vertically aligned ZnO–PANI nanohybrid film for polyphenol sensing, ACS Appl. Mater. Interfaces 5 (2013) 53465357.
22. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys. 105 (2009) 013502.
23. L.J. Pan, L. Pu, Y. Shi, T. Sun, R. Zhang, Y.O. Zheng, Hydrothermal synthesis of polyaniline mesostructures. Adv. Funct. Mater. 16 (2006) 12791288.
24. V.R. Mehto, A. Mehto, D.K. Gupta, R.K. Pandey, Synthesis and characterization of PANI/ZnO nanocomposites, J. Chin. Chem. Soc. 63 (2016) 935946.
25. R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MoS2 nanowires network, Appl. Phys. Lett. 112 (2018) 053502.
26. H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao, D. Cui, NO2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid, Sens. Actuators, B 176 (2013) 166173.
27. R. K. Sonker, B. C. Yadav, A. Sharma, M. Tomar, V. Gupta, Experimental investigations on NO2 sensing of pure ZnO and PANI–ZnO composite thin films, RSC Adv. 6 (2016) 5614956158.
28. S. Kailasa, M. Sai Bhargava Reddy, B. Geeta Rani, H. Maseed, K. Venkateswara Rao, Twisted polyaniline nanobelts @ rGO for room temperature NO2 sensing, Mater. Lett. 257 (2019) 126687.
29. A.T. Mane, S.T. Navale, S. Sen, D.K. Aswal, S.K. Gupta, V.B. Patil, Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature, Org. Electron. 16 (2015) 195204.
30. X.B. Yan, Z.J. Han, Y. Yang, B.K. Tay, NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization, Sens. Actuators, B 123 (2007) 107113.
31. J. Wang, X. Li, Y. Xia, S. Komarneni, Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor, ACS Appl. Mater. Interfaces 8 (2016) 86008607.
32. R. Mangu, S. Rajaputra, V.P. Singh, MWCNT–polymer composites as highly sensitive and selective room temperature gas sensors, Nanotechnology 22 (2011) 215502.
33. N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications, Eur. J. Inorg. Chem. 2015 (2015) 19121923.
34. A. Umar, A.A. Ibrahim, H. Algadi, H. Albargi, M.A. Alsairi, Y. Wang, S. Akbar, Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites, Ceram. Int. 47 (2021) 2569625707.
35. H. Wang, L. Zhou, Y. Liu, F. Liu, X. Liang, F. Liu, Y. Gao, UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles, Sens. Actuators, B 305 (2020) 127498.
36. S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han, Q. Zhao, D. Wei, Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing, Sens. Actuators, B 282 (2019) 917926.
37. C. Han, X. Li, Y. Liu, X. Li, C. Shao, Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination, J. Hazard. Mater. 403 (2021) 124093.
38. A. Chizhov, M. Rumyantseva, A. Gaskov, Light activation of nanocrystalline metal oxides for gas sensing: Principles, achievements, challenges, Nanomaterials 11 (2021) 892.
39. D.S. Sutar, N. Padma, D.K. Aswal, S.K. Deshpande, S.K. Gupta, J.V. Yakhmi, Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor, Sens. Actuators, B 128 (2007) 286292.
40. S. Srinives, T. Sarkar, A. Mulchandani, Nanothin polyaniline film for highly sensitive chemiresistive gas sensing, Electroanalysis 25 (2013) 14391445.
41. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Mater. Today 10 (2007) 4048.
42. R.R. Kumar, T. Murugesan, T.-W. Chang, H.-N. Lin, Defect controlled adsorption/desorption kinetics of ZnO nanorods for UV-activated NO2 gas sensing at room temperature, Mater. Lett. 287 (2021) 129257.
43. Kumar, R., Yadav, B. C., Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method, Mater. Lett. 167 (2016) 300302.
44. Kwon, O., McKee, M. L., Calculations of band gaps in polyaniline from theoretical studies of oligomers, J. Phys. Chem. B 104 (2000) 16861694.
45. Z. Zhu, J.-L. Chang, R.-J. Wu, Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature, Sens. Actuators B 214 (2015) 5662.
46. W. Avansi Jr, A.C. Catto, L.F. da Silva, T. Fiorido, S. Bernardini, V.R. Mastelaro, K. Aguir, R. Arenal, One-Dimensional V2O5/TiO2 Heterostructures for Chemiresistive Ozone Sensors, ACS Appl. Nano Mater. 2 ( 2019) 47564764.
47. A.C. Catto, T. Fiorido, E.L. Souza, W. Avansi Jr, Improving the ozone gas-sensing properties of CuWO4 nanoparticles, J. Alloys Compd. 748 (2018) 411417.
48. T.-H. Lo, P.-Y. Shih, C.-H. Wu, The Response of UV/Blue Light and Ozone Sensing Using Ag-TiO2 Planar Nanocomposite Thin Film, Sensors 19 (2019) 278.
49. N. Sui, S. Cao, P. Zhang, T. Zhou, T. Zhang, The effect of different crystalline phases of In2O3 on the ozone sensing performance, J. Hazard. Mater. 418 (2021) 126290.
50. R.R. Kumar, W.C. Yu, T. Murugesan, P.C. Chen, A. Ranjan, M.Y. Lu, H.-N.Lin, Formation of large-scale MoS2/Cu2O/ZnO heterostructure arrays by in situ photodeposition and application for ppb-level NO2 gas sensing, J. Alloys Compd. 952 (2023) 169984.
51. H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Functional metal–organic frameworks as effective sensors of gases and volatile compounds, Chem. Soc. Rev. 49 (2020) 6364–6401.
52. W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci. 8 (2015) 1837–1866.
53. X. Chen, R. Behboodian, D. Bagnall, M. Taheri, N. Nasiri, Metal-organic-frameworks: low temperature gas sensing and air quality monitoring, Chemosensors 9 (2021) 316.
54. B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, J. Mater. Chem. A 2 (2014) 16811–16831.
55. P. Li, H. Zhan, S. Tian, J. Wang, X. Wang, Z. Zhu, J. Dai, Y. Dai, Z. Wang, C. Zhang, Sequential ligand exchange of coordination polymers hybridized with in situ grown and aligned Au nanowires for rapid and selective gas sensing, ACS Appl. Mater. Interfaces 11 (2019) 13624–13631.
56. W.T. Koo, J.H. Cha, J.W. Jung, S.J. Choi, J.S. Jang, D.H. Kim, I.D. Kim, Few‐layered WS2 nanoplates confined in Co, N‐doped hollow carbon nanocages: Abundant WS2 edges for highly sensitive gas sensors, Adv. Funct. Mater. 28 (2018) 1802575.
57. H. Kim, W. Kim, J. Park, N. Lim, R. Lee, S.J. Cho, Y. Kumaresan, M.-K. Oh, G.Y. Jung, Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector, Nanoscale 10 (2018) 21168–21177.
58. G. Ren, Z. Li, W. Yang, M. Faheem, J. Xing, X. Zou, Q. Pan, G. Zhu, Y. Du, ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing, Sens. Actuators B 284 (2019) 421–427.
59. X. Wang, Z. Cao, B. Du, Y. Zhang, R. Zhang, Visible-light-driven zeolite imidazolate frameworks-8@ZnO composite for heavy metal treatment, Composites Part B 183 (2020) 107685.
60. X. Song, H. Sun, X. Cao, Z. Wang, D. Zhao, J. Sun, H. Zhang, X. Li, Hierarchically porous ternary Au/ZnO@ZIF-8 nanocomposite: spatial in situ Au encapsulation and catalytic activity for the reduction of p-nitrophenol, RSC Adv. 6 (2016) 112451–112454.
61. L. Bai, J. Mei, Low amount of Au nanoparticles deposited ZnO nanorods heterojunction photocatalysts for efficient degradation of p-nitrophenol, J. Sol-Gel Sci. Technol. 94 (2020) 468–476.
62. X. Li, G. Liu, D. Xu, X. Hong, S.C.E. Tsang, Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol, J. Mater. Chem. A 7 (2019) 23878–23885.
63. M. Zhan, S. Hussain, T.S. AlGarni, S. Shah, J. Liu, X. Zhang, A. Ahmad, M.S. Javed, G. Qiao, G. Liu, Facet controlled polyhedral ZIF-8 MOF nanostructures for excellent NO2 gas-sensing applications, Mater. Res. Bull. 136 (2021) 111133.
64. Y. Liu, R. Wang, T. Zhang, S. Liu, T. Fei, Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection, J. Colloid Interface Sci. 541 (2019) 249–257.
65. M. Zhan, C. Ge, S. Hussain, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, G. Qiao, G. Liu, Enhanced NO2 gas-sensing performance by core-shell SnO2/ZIF-8 nanospheres, Chemosphere 291 (2022) 132842.
66. X. Ren, Z. Xu, D. Liu, Y. Li, Z. Zhang, Z. Tang, Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles, Sens. Actuators B 357 (2022) 131384.
67. A. Bag, M. Kumar, D.-B. Moon, A. Hanif, M.J. Sultan, D.H. Yoon, N.-E. Lee, A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron, Sens. Actuators B 346 (2021) 130463.
68. Y. Liu, X. Liu, Y. Wang, R. Wang, T. Zhang, Metal-organic-framework-derived In2O3 microcolumnar structures embedded with Pt nanoparticles for NO2 detection near room temperature, Ceram. Int. 45 (2019) 9820–9828.
69. C. Arul, K. Moulaee, N. Donato, D. Iannazzo, N. Lavanya, G. Neri, C. Sekar, Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures, Sens. Actuators B 329 (2021) 129053.
70. P.-S. Cho, K.-W. Kim, J.-H. Lee, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram. 17 (2006) 975–978.
71. Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors, Ceram. Int. 45 (2019) 1513–1522.
72. N.M. Shaalan, T. Yamazaki, T. Kikuta, NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots, Sens. Actuators B 166–167 (2012) 671–677.
73. M.S. Barbosa, P.H. Suman, J.J. Kim, H.L. Tuller, M.O. Orlandi, Investigation of electronic and chemical sensitization effects promoted by Pt and Pd nanoparticles on single-crystalline SnO nanobelt-based gas sensors, Sens. Actuators B 301 (2019) 127055.
74. Z. Wang, X. Li, Y. Cui, Y. Yang, H. Pan, Z. Wang, C. Wu, B. Chen, G. Qian, A metal–organic framework with open metal sites for enhanced confinement of sulfur and lithium–sulfur battery of long cycling life, Cryst. Growth Des. 13 (2013) 5116–5120.
75. X. Yang, L. Qiu, X. Luo, ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity, RSC Adv. 8 (2018) 4890–4894.