研究生: |
葉金瓚 Yeh, Chin-Tsan |
---|---|
論文名稱: |
紫式決策架構以評估跨部門績效之研究 – 以晶圓廠工程部門相對績效評估之資料包絡分析為實證研究 UNISON Decision Framework for Cross-Function Performance Evaluation: An Empirical Study of Data Envelopment Analysis for Evaluating Relative Efficiency of Wafer Fab Engineering Departments |
指導教授: |
簡禎富
Chien, Chen-Fu 謝英哲 Hsieh, Ying-Che |
口試委員: |
胡均立
Hu, Jin-Li 丘宏昌 Chiu, Hung-Chang 吳吉政 Wu, Jei-Zheng |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經營管理碩士在職專班 Business Administration |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 績效評估 、模組工程 、資料包絡法 、紫式決策分析 、半導體 、部門績效 |
外文關鍵詞: | performance evaluation, manufacturing engineering, data envelopment analysis, UNISON decision framework, semiconductor, departmental performance |
相關次數: | 點閱:115 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業具有技術及資本密集的特色。隨著全球的產業環境日趨複雜,在面臨高度的產業競爭下,半導體企業亟思如何持續提升核心能力,維持其競爭優勢。因此,除了不斷提升技術能力外,如何達到成本控制與資源投入的最小化、產出與報酬的最大化,同時還要兼顧生產效率與製造品質,一直以來都是各個企業關注的議題。回顧過去半導體產業關於績效管理的文獻,大部分是針對企業之間的比較,即使是針對企業內部,也僅著墨於各廠區間的績效評估,對於廠區內工程部門間的效率評估則鮮少探討。一個晶圓廠的成功是由內部數個部門的績效所累積起來的成果,雖然工程部門的功勞往往不容易被看見,但不代表它的重要性可以被忽略,因為只要任何一個環節出錯,就可能造成無法彌補的傷害。本研究的目的在於建立半導體廠模組工程部門績效評估模式,蒐集2015年至2019年各部門的投入與產出資料,以紫式決策分析建構績效評估模式後,運用資料包絡分析法(Data Envelopment Analysis, DEA)求解總效率、技術效率與規模效率,藉此來衡量各部門的效率表現並分析無效率部門其效率不佳的原因。本研究進一步利用DEA中的差額變數分析結果,建議無效率部門如果要達到有效率,應該調整的那些投入項與其對應的數量,提供改善的方向與幅度,並給予決策者提升部門經營效率之參考依據,以更有效率的資源配置來增進經營績效。從實證研究的分析結果,更進一步驗證了本研究的效度與可行性。
The semiconductor industry features the characteristics of technology and capital intensity. Therefore, in addition to continuously improve technical capabilities in minimizing cost and maximizing productivity, semiconductor companies also focusing on maintain production efficiency and manufacturing quality. Most of the existing studies on the performance evaluation focus on the comparisons between companies. Even if it is for the internal company, it only focuses on the performance evaluation of each fab, and there is little discussion on the efficiency evaluation between the manufacturing engineering departments in the fab. The purpose of this study is to construct efficiency evaluation model for the manufacturing engineering department of a semiconductor company. In particular, multiple indices are used in the propsed evaluation model to measure the efficiency of the manufacturing engineering departments through UNISION decision framework and Data Envelopment Analysis (DEA) approach. Based on this model, top managers can realize each decision making unit’s efficiency. Besides, for the inefficiency DMUs, top managers can give the improvement direction and make appropriate resource allocation also. In addition, we used empirical to validate the proposed model by analyzing the pattern between production scale and efficiency. The analysis results help department managers to strength their advantage and improve their disadvantage for better efficiency performance based on the index for each departments. Thus, the results of the empirical study confirmed the validity and feasibility of the proposed approach.
林繼勇,簡禎富,胡志翰 (2008),紫式決策分析以建構液晶原料廠製程確效評估模式,《品質學報》,15(5),385 - 398。
周明璇、陳文智、簡禎富 (2013),建構半導體廠跨廠績效評估以提昇資源分配決策品質之研究,《品質學報》,20(4),427-444。
周哲維、簡禎富 (2016),需求不確定性之產能擴充決策分析-TFT-LCD產業之個案研究,《管理與系統》,23(1),1-29。
高強,黃旭男,Toshiyuki Sueyoshi (2003),管理績效評估-資料包絡分析法,華泰
文化出版社,台北。
簡禎富、游智閔、徐紹鐘 (2009),紫式決策分析以建構半導體晶圓廠人力規劃決策模型,《管理與系統》,16(2),157-180。
簡禎富、陳勁甫、林國義 (2013) ,新竹科學工業園區及週邊規劃研究園區之研究,《管理與系統》,20(2),227-255。
簡禎富 (2014),《決策分析與管理:紫式決策分析以全面提升決策品質》(二版),雙葉書廊,台北。
簡禎富、林國義 (2016),建構半導體晶圓廠整廠績效指標架構與全面資源管理,《管理與系統》,23(4),451-474。
簡禎富 (2019),工業3.5:台灣企業邁向智慧製造與數位決策的戰略,天下雜誌,台北。
Banker, R. D., Charnes, A., and Cooper, W. W. (1984), “Some models for estimating technical and scale efficiencies in data envelopment analysis,” Management Science, Vol, 30, No. 9, pp. 1078-1092.
Baker, W. V. (1994). Performance Measurement in Taxation: The Revenue Canada
Experience. In OECD (Ed.), Performance Measurement in Government: Issues
and Illustrations (pp. 39-50). Paris: OECD.
Cater, N., Rudolf, K., and Patrica, D. (1992), How Organizations Measure Success: The Use of Perform Indicators in Government. London: Routledge.
Charnes, A., Cooper, W. W., and Rhodes, E. (1978), “Measuring the efficiency of decision making units,” European Journal of Operational Reasearch, Vol, 2, No. 6, pp. 429-444.
Chu, Shyu, J. Z., and Khosla, R., (2008), Measuring the relative performance for leading fabless firms by using data envelopment analysis, Journal of Intelligent Manufacturing, 19(3), 257-272.
Chen, W. C., and Chien, C. F., (2011), Measuring relative performance of wafer fabrication operations: a case study, Journal of Intelligent Manufacturing, 22(3), 447-457.
Chien, C. F., Chen, W. C., and Hsu, S. C., (2010), Requirement estimation for indirect workforce allocation in semiconductor manufacturing, International Journal of Production Research, 48(23), 6959-6976.
Chien C. F., Wang, H. J., and Wang, M., (2007), A UNISON framework for analyzing alternative strategies of IC final testing for enhancing overall operational effectiveness, International Journal of Production Economics, 107(1), 20-30.
Cooper, W. W., Seiford, L. M., and Tone, K. (2000), Data Envelopment Analysis:A comprehensive Text with Models, Applications, References and DEA-solver software, Kluwer Academic Publishers, Boston.
Cooper, W. W., Seiford, L. M., and Zhu, J. (2004), Handbook on Data Envelopment Analysis, Kluwer Academic Publishers, Boston.
Drucker, P. F. (1973) Management Tasks, Responsibilities, Practices, Haper & Row,
New York.
Farrell, M. J. (1957), “ The measurement of productive efficiency,” Journal of the Royal Statistical Society, Vol. 120, No. 3, pp. 253-290.
Graza-Reyes, and J.A. (2015), “From measuring overall equipment effectiveness (OEE) to overall resource effectiveness (ORE),” Journal of Quality in Maintenance Engineering, 12 October 2015, Vol.21(4), pp.506-527.
Golony, B., and Roll, Y. (1989), “An application procedure for DEA,” OmegaM, Vol 17, No. 3, pp. 237-250.
Hatry, H. P. (2006). Performance Measurement: Getting Results (2nd Ed.). Washington,
D. C.: The Urban Institute Press.
Hinrichs, N. and Leppelt, P. and Barke, E. (2007), “Building up a performance measurement System to determine Productivity metrics of semiconductor design projects,” IEEE International Engineering Management Conference, July 2007, pp.327-329.
Hsu, C. Y. (2014), “Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations,” Journal of Intelligent Manufacturing, 2014, Vol.25(5), pp.945-960.
Hunn, D. K. (1994). Measuring Performance in Policy Advice: A New Zealand
perspective. In OECD (Ed.), Performance Measurement in Government: Issues
and Illustrations (pp. 7-22). Paris: OECD.
Hu, J-L., and Chang, T. P. (2016). Total-factor energy efficiency and its extensions: Introduction, computation and application. In International Series in Operations Research and Management Science (pp. 45-69). (International Series in Operations Research and Management Science; Vol. 238). Springer New York LLC.
Kaplan, R. S., and Norton, D. P. (1996a), Linking the Balanced Scorecard to Strategy. California Management Review, 39(1): 53-79.
Kaplan, R. S., and Norton, D. P. (1996b), Using the Balanced Scorecard as a Strategic Management System. Harvard Business Review, 74(1): 75-85.
Keeney, R. L., and Raiffa. H. (1993), Decision with Multiple Objectives: Preferences and Value Tradeoffs, Cambridge University Press New York.
Kozmetsky, G. and Yue, P., (1998), “Comparative performance of golobal semiconductor companies,” Omega, April, 1998, Vol.26(2), pp.153(23).
Leachman, R. C., and Hodges, D. A. (1996), “Benchmarking semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 2, pp. 158~169.
Leachiman, R. C., Ding, S., and Chien C. F. (2007), “Economic Efficienct Analysis of Wafer Fabrication,” IEEE Transactions on Automation Science and Engineering, October 2007, Vol.4(4), pp.501-512.
Liu, H. F., and Wang, P. H., (2008), DEA Malmquist productivity measure: Taiwanese semiconductor companies, International Journal of Production Economics, 112(1), 367-379.
London, Amir, Segev, Danny (2003), “Implementing a world-class OEE management system,” Solid State Technology, June 2003, Vol.46(6), pp.97(2)
Meyer, M. W. (2002), Rethinking Performance Measurement: Beyond the Balanced
Scorecard. Cambridge: Cambridge University Press.
Montoya-Torres and Jario, R. (2006), “Manufacturing performance evaluation in wafer semiconductor factories, International Journal of Productivity and Performance Management, 01 April 2006, Vol.55(3/4), pp.300-310.
Seiford, L. M. and Zhu, J., (1999), Profitability and marketability of the top 55 U.S. commercial banks, Management Science, 45(9), 1270-1288.
Sutherland, Doug, Wilkinson, and Marc (2007), “Using wafer success rate metric for analyzing cycle time,” Solid State Technology, April 2007, pp.45-53.
Tone, K. (1999), “A Slacks-Based Measure of Efficiency in Data Envelopment Analysis,” European Journal of Operational Research, Vol. 130, No. 3, pp. 498-509.
Wang, Q. and Li, B. (2009), “Innovative metrics for machine performance measurement and their applications in semiconductor manufacturing,” 2009 16th International Conference on Industrial Engineering and Engineering Management, Octor 2009, pp. 793-797.
Wu, J. Z. and Chien C. F., (2008), Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings, OR Spectrum, 30(3), 401-430.
Wu, J. Z. and Hsu, C. Y., (2009), Critical success factors for improving decision quality on collaborative design in the IC supply chain, Journal of Quality, 16(2), 95-108.