研究生: |
郭宗翰 Kuo, Tsung-Han |
---|---|
論文名稱: |
全溶液製程有機共軛高分子太陽能電池之漸進式結構設計與研究 Design, fabrication and investigation of all solution-processable conjugated polymer organic solar cells with graded-concentration structure |
指導教授: |
洪勝富
Horng, Sheng-Fu 孟心飛 Meng, Hsin-Fei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 溶液製程 、緩衝層 、漸進式 、多層 、PIN結構 |
外文關鍵詞: | solution-process, buffer layer, graded-concentration, multilayer, pin structure |
相關次數: | 點閱:124 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機共軛高分子太陽能電池因為材料具有許多良好的特性,在製程上相當容易製作,且具備了可撓曲性,能夠應用於更廣大的設計需求,而利用刮刀成膜或噴墨印刷等方式,使元件能朝向大面積、大尺寸的方向發展,未來前途不可限量。
單層有機高分子太陽能電池的效率已達瓶頸,要向下發展勢必要朝多層結構邁進,而互溶問題為製作多層結構時所需克服的困難之一,本論文利用丙二醇材料當作緩衝層,能夠有效解決不同層之間的互溶問題,成功製作出全溶液製程的多層元件,同時我們也證明了多層結構對於元件特性的提升大有幫助。
Polymer solar cells (PSCs) exhibit many advantages such as simple processing, flexibility and the potential to scale up to large area by using blade coating or ink-jet printing techniques. Interlayer mixing is one of the main problems for achieving PSCs with multilayer structure. In this study, we solved the problem by a buffer layer technique. The result showed that the technique which employs glycol as a buffer layer successfully circumvented the interlayer mixing and made the multi-layer devices achieveable with all-solution process. We also demonstrated that the device performance was greatly enhanced with a multi-layer structure.
1. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
2. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ
substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
3. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671 (1976).
4. K. Sriprapa and P. Sichanugrist, “High efficiency amorphous/microcrystalline
silicon solar cell fabricated on metal substrate,” Photovoltaic Energy Conversion,
2003. Proceedings of 3rd World Conference on Volume 3, Page(s):2799 - 2800
(2003)
5. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason,
and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt.: Res. Appl. 7, 311 (1999).
6. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)
7. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007)
8. B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on
dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
9. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline
dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A:
Chemistry 164 (2004) 3–14.
10. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
11. K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16, 4533 (2004)
12. Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,”J.
Mater. Res., Vol. 19, No. 7, Jul 2004.
13. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183
(1986)
14. A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells,” App. Phys. Lett. 89,213506 (2006)
15. M. Hiramoto, H. Fujiwara, and M. Yokoyama, “p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,” J. Appl. Phys. 72,15 (1992)
16. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance,” J. Appl. Phys. 98, 124903 (2005)
17. P. Sullivan, S. Heutz, S. M. Schultes, and T. S. Jones, “Influence of codeposition on the performance of CuPc–C60 heterojunctionphotovoltaic devices,” Appl. Phys. Lett., Vol. 84, No. 7, 16 February 2004
18. A. Hadipour, B. Boer, and P. W. M. Blom, “Organic Tandem and Multi-Junction Solar Cells,” Adv. Funct. Mater. 18,169-181 (2008)
19. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, and A. P. Alivisatos, K. W. J. Barnham, “Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells,” Phys. Rev. B 67, 115326 (2003).
20. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994)
21. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002)
22. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.
23. H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004)
24. 太陽能工程–太陽電池篇 莊嘉琛 全華科技圖書股份有限公司 民86.
25. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002)
26. website of wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
27. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton
diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction
photovoltaic cell,” Appl. Phys. Lett. 68, 3120 (1996)
28. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R.
Anderson, and O. Inganäs, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, 61, 12957 (2000).
29. T. J. Savenije, J. M. Warman, and A.Goossens, “Visible light sensitisation of
titanium dioxide using a phenylene vinylene polymer,” Chem. Phys. Lett. 287, 148 (1998)
30. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.
Scherf, E. Harth, A. Gügel, and K. Müllen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, 59, 15346 (1999)
31. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” J. Appl. Phys. 98, 043704 (2005)
32. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger,
“Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of
Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun. 578 (1977)
33. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,”
Chem. Mater. 16, 4533 (2004).
34. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
35. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
36. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
37. S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl .Phys. A,68, 447 (1999)
38. M.G. Mason, L.S. Hung, C.W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys., 86, 1688 (1999)
39. G. Li, V. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution
processable polymer photovoltaic cells by self-organization of polymer blends,”
Nature Mater. 4, 864, (2005).
40. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, “Molecular level alignment at organic semiconductor-metal interfaces,” Appl. Phys. Lett. 73, 662 (1998).
41. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Adv. Mater. 11, 605 (1999).
42. I. G. Hill, A. J. Makinen, and Z. H. Kafafi, “Initial stages of metal/organic
semiconductor interface formation,” J. Appl. Phys. 88, 889 (2000).
43. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
New York, 1940.
44. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors,” Phys. Rev. 54, 647 (1938).
45. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys.52, 2285 (1970).
46. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and
temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, 656 (1997).
47. S. Karg, M. Meier, and W. Riess, “Light-emitting diodes based on
poly-p-phenylene-vinylene: I. Charge-carrier injection and transport,” J. Appl. Phys.82, 1951 (1997).
48. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
49. S. R. Tseng, S. C. Lin, Hsin-Fei Meng, H. H. Liao, C. H. Yeh, H. C Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88, 163501 (2006)
50. A. M. Goodman, A. Rose, J. Appl. Phys. 1971, 42, 2823.
51. Phys.Rev.Lett.94,126602(2005).
52. R. Sokel, R. C. Hughes, J. Appl. Phys. 1982, 53, 7414.