研究生: |
林史哲 Shih-Che lin |
---|---|
論文名稱: |
利用步進式時域解析霍式轉換紅外光譜法研究CH2CHCl在193 nm的雷射光解反應 Photodissociation of CH2CHCl at 193 nm monitored with step-scan time-resolved Fourier-transform infrared emission spectroscopy |
指導教授: |
李遠鵬
Yuan-Pern Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | CH2CHCl在193 nm的雷射光解反應 、步進式時域解析霍式轉換紅外光譜法 |
外文關鍵詞: | Photodissociation of CH2CHCl at 193 nm, step-scan time-resolved Fourier-transform infrared emission spectroscopy |
相關次數: | 點閱:108 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文利用步進式掃瞄時域解析–霍氏轉換紅外光譜法研究vinyl chloride(CH2CHCl)在298K,於193 nm準分子雷射光解後在不同時域(1-1600 us,5 us之時間解析度)下所產生HCl(v)之放射光譜。實驗中可觀測到HCl(v=1-5)之放光,且各別佈居數最大值發生於光解後不同時域中。對於HCl(v)之相對佈居時域分佈圖的動力學模式分析方面,若只使用HCl(v)的初生態佈居數及HCl(v)受母分子(CH2CHCl)弛緩作用的模式下進行適解,並不能得到令人滿意的結果,因此研判生成HCl(v)的途徑應不只一組。當加入F2於系統中,在193 nm光解後可以觀測到HF(v=1-3)之放光,表示系統於光解後有H原子的生成,而產物HF(v)是來自於H + F2的反應。當加入cyclohexane(c-C6H12)移除系統中的Cl原子後,對於HCl(v)之相對佈居時域分佈圖的動力學模式的分析方面,於採用H原子的解離(接著於二次反應中生成HCl)、HCl(v)的解離及HCl(v)受母分子弛緩作用的模式下適解,可得到令人滿意的結果。綜合上述,結合H原子、Cl原子及HCl分子解離的途徑,與振動弛緩步驟的動力學模式下,可推得Cl及H之解離途徑相對於HCl之解離途徑的分枝比率,其值分別為1.44□0.17及2.25□0.09。此外應用此技術亦可精確的量測到HCl(v=1-4)受到CH2CHCl母分子弛緩作用之之雙分子速率係數 ,分別為0.762□0.048、1.54□0.11、4.26□0.38以及17.6□2.8(單位為10-12 cm3 molecule-1 s-1)。HCl之初生振動態分佈是承續本實驗室林所得的實驗結果(林孝瑞, 國立清華大學化學研究所博士論文, 2000.),HCl(v=1-5)各個振動態的初生振動態分佈比率,分別0.245、0.235、0.213、0.181和0.125。
1. L. G. Wade, Jr., Organic Chemistry, 2nd Ed. (Prentice-Hall, Inc., New Jersey, 1991), pp. 286.
2. F. S. Rowland, and M. J. Monina, Rev. Geophy. Space. Phys. 13, 1 (1975).
3. http://www.epa.gov.tw/j/toxic/chemical.data/7145.htm
4. M. J. Berry, J. Chem. Phys. 61, 3114 (1974).
5. D. A. Blank, W. Sun, A. G. Suits, Y. T. Lee, S. W. North, and G. E. Hall, J. Chem. Phys. 108, 5414 (1998).
6. M. Umemoto, K. Seki, H. Shinohara, U. Nagashima, N. Nishi, M. Kinoshita, and R. Shimada, J. Chem. Phys. 83, 1657 (1985).
7. M. J. Rossi, and H. Helm, J. Chem. Phys. 87, 902 (1987).
8. T. Fujimoto, A. M. Rennert, and M. H. J. Wijnen, Ber. Bunsenges. Phys. Chem. 74, 282 (1970).
9. M. G. Moss, M. D. Ensminger, and J. D. McDonald, J. Chem. Phys. 74, 6631 (1981).
10. D. J. Donaldson, and S. R. Leone, Chem. Phys. Lett. 132, 240 (1986).
11. 林孝瑞, 國立清華大學化學研究所博士論文, 2000.
1. A. A. Michelson, Phil. Mag. Ser. 5, 256 (1891).
2. P. Fellgett, J. Phys. Radium 19, 187 (1958).
3. P. Jacquinot, Rep. Prog. Phys. 23, 267 (1960).
4. J. C. Polanyi and W. J. Skrlac. Chem. Phys. 23, 167 (1977).
5. P. M. Aker, B. J. Niefer, J. J. Sloan, and H. Heydtmann, J. Chem. Phys. 87, 203 (1987).
6. K. Tamagake and D. W. Setser, J. Phys. Chem. 83, 1000 (1979).
7. D. J. Donaldson and S. R. Leone, J. Chem. Phys. 85, 817 (1986).
8. P. O. Stoutland, P. B. Dyer, and W. H. Woodruff, Science 259, 1913 (1992).
9. J. J. Solan and E. J. Kruus, Time-resolved Spectroscopy, Advances in Spectroscopy, Ed. R. J. M. Clark and R. E. Hester (Wiley, New York, 1989), Vol. 18, pp. 219-253.
10. A. Mantz, Appl. Spectrosc. 30, 459 (1976).
11. A. A. Garison, R. A. Crocombe, G. Mamantov, and J. D. de Haseth, Appl. Spectrosc. 34, 399 (1980).
12. P. M. Aker and J. J. Sloan, J. Chem. Phys. 85, 1412 (1986).
13. T. R. Fletcher and S. R. Leone, J. Chem. Phys. 88, 4720 (1988).
14. G. V. Hartland, W. Xie, and H.-L. Dai, Rev. Sci. Instru. 63, 3261 (1992).
15. D. J. Donaldson and J. J. Sloan, J. Chem. Phys. 82, 1873 (1985).
16. E. Arunan, G. Manke II, and D. W. Setser, Chem. Phys. Lett. 207, 81 (1993).
17. J. M. Preses, G. E. Hall, T. J. Sears, R. E. Weston, G. W. Flynn, and H. J. Berstein, Rev. Sci. Instru. 64, 95 (1995).
18. K. Matsutani, A. Yokota, and M. Tasuni, Appl. Spectrosc. 46, 560 (1992).
19. R. E. Murphy and H. Sakai, Aspen. Int. Cof. Fourier Spectrosc. [Proc.], Aspen, Colorado, 1970, p. 301.
20. R. E. Murphy, F. Cook, and H. Sakai, J. Opt. Soc. Am. 65, 600 (1975).
21. H. Sakai and R. E. Murphy, Appl. Opt. 17, 1342 (1978).
22. D. E. Heard, D. G. Weston, and G. Hancock, Appl. Spectrosc. 47, 1438 (1993).
23. R. A. Palmer, C. J. Manning, and J. L. Chao, Appl. Spectrosc. 43, 193 (1989).
24. G. Herzberg, Spectra of Diatomic Molecules, 2nd Ed. (Van Nostrand Reinhold company Inc., New York, 1965), pp. 127.
25. G. Herzberg, Spectra of Diatomic Molecules, 2nd Ed. (Van Nostrand Reinhold company Inc., New York, 1965), pp. 128.
26. E. Arunan, D. W. Setser, and J. F. Ogilvie, J. Chem. Phys. 97, 1734 (1992).
27. D. Oba, B. S. Agrawalla, and D. W. Setser, J. Quant. Spectrosc. Radiat. Transfer. 34, 283 (1985).
1. M. J. Berry, J. Chem. Phys. 61, 3114 (1974).
2. D. A. Blank, W. Sun, A. G. Suits, Y. T. Lee, S. W. North, and G. E. Hall, J. Chem. Phys. 108, 5414 (1998).
3. Y. Mo, K. Tonokura, Y. Matsumi, M. Kawasaki, T. Sato, T. Arikawa, P. T. A. Rrilly, Y. Xie, Y. Yang, Y. Huang, and R. J. Gordon, J. Chem. Phys. 97, 4815(1992).
4. G. He, Y. Yang, Y. Huang, S. Hashimoto, and R. J. Gordon, J. Chem. Phys. 103, 5488(1995).
5. 林孝瑞, 國立清華大學化學研究所博士論文, 2000.
6. S. R. Leone, J. Phys. Chem. Ref. Data 11, 953 (1982) and references therein.
7. E. Arunan, D. W. Setser, and J. F. Ogilvie, J. Chem. Phys. 97, 1734 (1992).
8. J. M. Hollas, Modern Spectroscopy, 3rd Ed. (Jonh Wiley & Sons, New York, 1996), pp. 130-133.
9. FACSIMILE is a computer software for modelling process and chemical reaction kinetics provided by AEA technology, Oxfordshire, United Kingdom.
10. D. M. Rowley, R. Lesclaux, and M. D. Hurley, J. Phys. Chem. 96, 4889(1992).
11. J. P. Sung, R. J. Malins, and D. W. Setser, J. Phys. Chem. 83, 1007(1979).
12. R. G. AlBright, A. F. Dodonov, G. K. Lavrovskaya, I. I. Morosov, and V. L. Talroz, I. Chem. Phys. 50, 3632(1969).
13. J. B. Levy, and B. S. W. Copeland, J. Phys. Chem. 72, 3168(1968).
14. R. D. Coombe, A. T. Pritt, Jr., and D. Pilipovich, Chem. Phys. Lett. 35, 349(1975).
15. T. Fujimoto, A. M. Rennert, and M. H. J. Wijnen, Ber. Bunsenges. Phys. Chem. 74, 282 (1970).
16. J. C. Polanyi, and J. J. Sloan, J. Chem. Phys. 57, 4988(1972).
17. L. S. Dzelzkalns, and F. Kaufman, J. Chem. Phys. 77, 3508(1982).