簡易檢索 / 詳目顯示

研究生: 郭怡廷
Kuo, I Ting
論文名稱: 以石墨烯製備可撓式透明導電膜及探討其電磁波屏蔽性質
Fabrication of graphene-based flexible transparent films and study their properties for electromagnetic interference shielding
指導教授: 戴念華
Tai, Nyan Hwa
口試委員: 羅丞曜
Lo, Cheng Yao
黃繼遠
Huang, Chi Yuan
戴念華
Tai, Nyan Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 電磁波屏蔽石墨烯可撓透明銀網格導電膜
外文關鍵詞: Electromagnetic interference shielding, graphene, flexible, transparent, silver grid, conductive film
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究旨在製備一同時具備可撓性、電磁波屏蔽效率以及透光性的薄膜,期望在顯示螢幕、日常玻璃表面、電器產品外層之應用。為此,本研究分別製備透明導電薄膜及銀網格於可撓聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)高分子基板上作為屏蔽材料,探討官能基化石墨烯摻混於導電油膜、銀網格線距及結構推疊對於片電阻、電磁波屏蔽效率和透光度的影響。研究結果顯示,含1.0 wt%官能基化石墨烯導電油墨薄膜之片電阻、頻率1.2 GHz下的電磁波屏蔽效率和透光度分別為562.57 ± 9.54 Ω/sq、3.72 dB和97.36%;間距1.0 mm銀網格則是28.17 ± 14.35 Ω/sq、23.42 dB和93.45%。進一步將上述兩試片熱壓疊合後發現,其穿透度雖略降低至82.71%,但其片電阻大幅下降到1.86 ± 0.09 Ω/sq,因而致使電磁波屏蔽效率大幅提升至37.50 dB。此結果主要乃因導電油墨薄膜可以填補到銀網格之間和奈米銀顆粒的間隙中,使銀網格與透明導電薄膜緊密接觸,造成片電阻降低,故可以大幅提升電磁波屏蔽效率,而達可撓式透明電磁波屏蔽材料之目標。


    This work concentrates on preparing a film with flexibility, transparency and high electromagnetic interference shielding efficiency (EMI SE). With these properties, it can be used on monitors, glass or outer cases of electronics. Therefore, we coated graphene, conductive ink and silver grid on flexible PET substrates as shielding materials and then investigated the influence of the stacked structure on sheet resistance, EMI SE and transparency. The sheet resistance, EMI SE at frequency of 1.2 GHz and transparency of the conductive ink film containing 1 wt% functionalized graphene are 562.57 ± 9.54 Ω/sq, 3.72 dB and 97.36%, respectively, and they are 28.17 ± 14.35 Ω/sq, 23.42 dB and 93.45% for 1.0 mm spacing grid. After the aforementioned samples were hot pressed together, the transparency is measured to be 82.71%, while the EMI SE and sheet resistance become 37.50 dB and 1.86 ± 0.09 Ω/sq, respectively. The enhancement of EMI SE and the reduction of sheet resistance were due to that the conductive film tends to fill in the vacancies among grids and voids between silver particles after the hot pressing process, which compacts them tightly.

    摘要……………………………………………………………..………Ⅰ Abstract………………………………………..………………………...Ⅱ 致謝……………………………………………………………………Ⅲ 目錄………………………………………..…………………………....Ⅳ 表目錄………………………………………..………..………………..Ⅷ 圖目錄………………………………………..………..………………..Ⅸ 第一章 緒論………………………………..………..…………………..1  1.1 前言………………………………..………..…………………….1  1.2 研究動機………………………………..………..……………….2 第二章 文獻回顧………………………………..………..……………..4  2.1 電磁波原理………………………………..………..…………….4   2.1.1 電磁波干擾理論……………………..………..……………..4   2.1.2 電磁波屏蔽理論……………………..………..……………..5  2.2電磁波屏蔽材料………………………………..………..………..9   2.2.1 塊材(bulk) ………………………………..………..………...9   2.2.2 發泡材(foam) ……………………………..………..………12   2.2.3 薄膜(film) ……………………………..………..………......13  2.3 石墨烯……………………………..………..………...................17   2.3.1 石墨烯之簡介……………………………..………..………17   2.3.2 石墨烯之特性……………………………..………..………18 第三章 實驗設備與步驟……………………………..………..………43  3.1 實驗儀器……………………………..………..………...............43   3.1.1 電磁加熱攪拌機………………..………..………................44   3.1.2 離心機…………………………..………..………................44   3.1.3 超音波震盪機…………………..………..………................44   3.1.4 塗佈棒…………………………..………..………................45   3.1.5 噴印機…………………………..………..………................45   3.1.6 熱壓機…………………………..………..………................45   3.1.7 場發射掃描式電子顯微鏡……..………..………................46   3.1.8 原子力顯微鏡…………………..………..………................46   3.1.9 X光繞射儀………………………..………..……….............46   3.1.10 拉曼光譜儀………………………………………………47   3.1.11 霍氏轉換紅外光譜儀…………..………..………..............47   3.1.12 三用電表………………………..………..………..............47   3.1.13 電磁波屏蔽效率量測設備……..………..………..............48   3.1.14 紫外光/可見光分光光譜儀……..………..……….............48  3.2 實驗步驟………………………..………..……….......................48   3.2.1 官能基化石墨烯之製備………………..……......................50   3.2.2 透明導電油墨薄膜試片製備………………..………..........51   3.2.3 銀網格試片製備……………..………..………....................51   3.2.4 熱壓疊合試片製備…………..………..………....................52  3.3 性質分析………………..………..………............................…...52 第四章 結果與討論…………..………..………............................…....61  4.1 石墨烯與官能基化石墨烯的分析……............................….......61   4.1.1 掃描式電子顯微鏡之形貌觀察…............................…........61   4.1.2 X射線繞射光譜分析……..………...............................…....62   4.1.3 拉曼光譜分析………………………………………………63   4.1.4 霍氏轉換紅外光譜分析…..………...............................…...64  4.2 銀網格與透明導電油墨薄膜之形貌分析…..………...…..........64   4.2.1透明導電油墨薄膜形貌觀察…..………................…............64   4.2.2銀網格線寬觀察..............…......................................…..........65  4.3 片電阻量測…..………...............................…..............…............66  4.4 電磁波屏蔽效率分析...............................…..............…..............66   4.4.1 單片基板之金屬網格.......................…..............…...............67   4.4.2 熱壓疊合試片...............................…..............…...................68  4.5 透光度量測...............................…..............….......….…..............69   4.6 撓曲測試……………………………………………………...70  4.7 性質比較.......……....................…..............….......….…..............70 第五章 結論.......……....................…..............….......…......…..............85 參考文獻.......…................…..............….......……………....…..............87

    [1] 劉順華、劉軍民及董星龍,「電磁波遮罩及吸波材料」,北京化學工業出版社,2006年6月
    [2] 李煥松,「電子相容性測試」,電子月刊,第五卷第八期總號49,頁74-86,1999
    [3] 孫志光,「奈米碳管複合材料電磁波屏蔽性質之研究」,碩士論文,國立清華大學,中華民國九十四年六月
    [4] C. R. Paul, “Introduction to electromagnetic compatibility”, Wiley Series in Microwave and Optical Engineering, 1992
    [5] D. K. Cheng, “Field and wave electromagnetics”, Mass Addison Wesley, chapter 8, 1989
    [6] D. R. J. White and Michel Mardiguian, “Electromagnetic shielding”, A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, 1988
    [7] Y. Chen, Y. Li, M. Yip, and N. Tai, “Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles”, Compos. Sci. Technol., Vol. 80, pp. 80-86, 2013
    [8] W. L. Song, M. S. Cao, M. M. Lu, S. Bi, C. Y. Wang, and J. Liu, et al., “Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding”, Carbon, Vol. 66, pp. 67-76, 2014
    [9] T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, and S. Ma, X. Yang, “Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties”, J. Mater. Chem., Vol. 22, pp. 15190-15197, 2012
    [10] R. Che, L. M. Peng, X. Duan, Q. Chen, and X. Liang, “Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes”, Adv. Mater., Vol. 16, no. 5, 2004
    [11] H. W. Ott, “Electromagnetic compatibility engineering”, John wiley & sons Inc., chapter 6, 2009
    [12] 陳亞群,「多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究」,碩士論文,國立清華大學,中華民國九十六年六月
    [13] K. J. Vinoy and R. M. Jha, “Radar absorbing materials from theory to design and characterization”, Kluwer Academic Publishers, 1996
    [14] C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, and S. Hu, et al., “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”, Appl. Phys. Lett., Vol. 98, issue 7, 2011
    [15] M. H. Al-Saleh, and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites”, Carbon, Vol. 47, pp. 1738-1746, 2009
    [16] D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials”, Carbon, Vol. 39, pp. 279-285, 2001
    [17] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, and J. Cai, et al., “Electromagnetic interference shielding of graphene/epoxy composites”, Carbon, Vol. 47, pp. 922-925, 2009
    [18] Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, et al., “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites”, Carbon, Vol. 45, issue 8, pp. 1614-1621, 2007
    [19] Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, and F. Li, et al., “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites”, Carbon, Vol. 45, pp. 821-827, 2007
    [20] D. M. Mihut, K. Lozano, S. C. Tidrow, and H. Garcia, “Electromagnetic interference shielding effectiveness of nanoreinforced polymer composites deposited with conductive metallic thin films”, Thin Solid Films, Vol. 520, pp. 6547-6550, 2012
    [21] M. Oyharçabal, T. Olinga, M. P. Foulc, S. Lacomme, E. Gontier, and V. Vigneras, “Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites”, Compos. Sci. Technol., Vol. 74, pp. 107-112, 2013
    [22] B. Yuan, L. Yu, L. Sheng, K. An, and X. Zhao, “Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites”, J. Phys. D: Appl. Phys., Vol. 45, no. 23, 2012
    [23] P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding”, Mater. Chem. Phys., Vol. 113, pp. 919-926, 2009
    [24] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, and M. Zhang, et al., “Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance”, Carbon, Vol. 48, pp. 487-493, 2010
    [25] D. Stauffer and A. Aharony, “Introduction to percolation theory, 2nd edition”, CRC Press, 1994
    [26] X. C. Tong, “Advanced Materials and Design for Electromagnetic Interference Shielding”, CRC Press, chapter 8, 2009
    [27] O. Losito, D. Barletta, and V. Dimiccoli, “A wide-frequency model of metal foam for shielding applications”, IEEE Transactions on Electromagnetic Compatibility, Vol. 52, issue 1, 2010
    [28] Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, “Conductive carbon nanofiber-polymer foam structures”, Adv. Mater., Vol. 17, pp. 1999-2003, 2005
    [29] Y. Yang and M. C. Gupta, “Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding”, Nano Lett., Vol. 5, no. 11, pp. 2131-2134, 2005
    [30] A. Fletcher, M. C. Gupta, K. L. Dudley, and E. Vedeler, “Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications”, Compos. Sci. Technol., Vol. 70, pp. 953-958, 2010
    [31] H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, and Z. Z. Yu, “Tough graphene-polymer microcellular foams for electromagnetic interference shielding”, ACS Appl. Mater. Interfaces, Vol. 3, pp. 918-924, 2011
    [32] V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, “Functionalized graphene–PVDF foam composites for EMI shielding”, Macromol. Mater. Eng., Vol. 296, pp. 894-898, 2011
    [33] Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding”, Adv. Mater., Vol. 25, pp. 1296-1300, 2013
    [34] P. P. Kuzhir, A. G. Paddubskaya, M. V. Shuba, S. A. Maksimenko, A. Celzard, and V. Fierro, et al., “Electromagnetic shielding efficiency in Kα-band: carbon foam versus epoxy/carbon nanotube composites”, J Nanophotonics, Vol. 6,pp. 061715, 2012
    [35] Y. J. Chen, Y. Li, B. T. T. Chu, I T. Kuo, M. Yip, and N. Tai, “Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding”, Compos. Pt. B Eng., Vol. 70, pp. 231-237, 2015
    [36] S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, and J. H. Kim, et al., “Electromagnetic interference shielding effectiveness of monolayer graphene”, Nanotechnology, Vol. 23, pp. 455704, 2012
    [37] H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films”, Appl. Phys. Lett., Vol. 90, pp. 183119, 2007
    [38] C. Y. Lee, H. G. Song, K. S. Jang, E. J. Oh, A. J. Epstein, and J. Joo, “Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films”, Synth. Met., Vol. 102, pp. 1346-1349, 1999
    [39] E. Håkansson, A. Amiet, S. Nahavandi, and A. Kaynak, “Electromagnetic interference shielding and radiation absorption in thin polypyrrole films”, Eur. Polym. J., Vol. 43, pp. 205-213, 2007
    [40] B. R. Kim, H. K. Lee, E. Kim, and S. H. Lee, “Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films”, Synth. Met., Vol. 160, pp. 1838-1842, 2010
    [41] M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, and S. Yang, et al., “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding”, Langmuir, Vol. 28, pp. 7101-7106, 2012
    [42] X. Yu, and Z. Shen, “The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method”, J. Magn. Magn. Mater., Vol. 321, pp. 2890-2895, 2009
    [43] W. M. Kim, D. Y. Ku, I. K. Lee, Y. W. Seo, B. K. Cheong, and T. S. Lee, et al., “The electromagnetic interference shielding effect of indium–zinc oxide/silver alloy multilayered thin films”, Thin Solid Films, Vol. 473, pp. 315-320, 2005
    [44] J. G. Park, J. Louis, Q. Cheng, J. Bao, J. Smithyman, and R. Liang, et al., “Electromagnetic interference shielding properties of carbon nanotube buckypaper composites”, Nanotechnology, Vol. 20, pp. 415720, 2009
    [45] H. W. Tien, Y. L. Huang, S. Y. Yang, J. Y. Wang, and C. C. M. Ma, “The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films”, Carbon, Vol. 49, pp. 1550-1560, 2011
    [46] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, and T. Stauber, et al., “Fine structure constant defines visual transparency of graphene”, Science, Vol. 320, pp. 1308, 2008
    [47] G. Gruner, “Carbon nanotube films for transparent and plastic electronics”, J. Mater. Chem., Vol. 16, pp. 3533-3539, 2006
    [48] E. Savrun, and H. D. Aguila, “Electrically conductive tungsten silicide coatings for EMI/RFI shielding of optically transparent windows”, J. Mater. Sci., Vol. 33, pp. 2893-2897, 1998
    [49] D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid”, Appl. Phys. Lett., Vol. 96, pp. 041109, 2010
    [50] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, et al., “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004
    [51] A. K. Geim, and K. S. Novoselov, “The rise of graphene”, Nat. Mater., Vol. 6, pp. 183-191, 2007
    [52] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nat. Nanotechnol., Vol. 3, pp. 206, 2008
    [53] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, and J. Hone, et al., “Ultrahigh electron mobility in suspended graphene”, Solid State Commun., Vol. 146, pp. 351-355, 2008
    [54] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, et al., “Superior thermal conductivity of single-layer graphene”, Nano Lett., Vol. 8, no. 3, pp. 902-907, 2008
    [55] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”,Science, Vol. 321, pp.385-388, 2008
    [56] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett., Vol. 8, no. 10, pp. 3498-3502, 2008
    [57] 李裕安,「鍍覆金屬奈米顆粒之奈米碳材料作為透明導電膜之導電材料其光電與電熱特性之研究」,博士論文,國立清華大學,中華民國一百零三年一月
    [58] 韋峻文,「石墨烯與氧化石墨烯的製備與鑑定」,碩士論文,國立台灣師範大學,中華民國一百年七月
    [59] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, and I. S. Jung, et al., “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Adv. Funct. Mater., Vol. 19, pp.1987-1992, 2009
    [60] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, and F. Mauri, et al., “The Raman fingerprint of graphene”, Phys. Rev. Lett., Vol. 97, 2006
    [61] Y. J. Choi, S. C. Gong, D. C. Johnson, S. Golledge, G. Y. Yeom, and H. H. Park, “Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition”, Appl. Surf. Sci., Vol. 269, pp. 92-97, 2013

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE