簡易檢索 / 詳目顯示

研究生: 吳明翰
Wu, Ming-Han.
論文名稱: 根據隨機森林演算法解析十年期美國公債期限貼水及其下降趨勢
Analysis of 10 year US Treausry's term preimum and its downtrend using random forest algorithm
指導教授: 鍾經樊
Chung, Ching-Fan
口試委員: 張焯然
Chang, Jow-Ran
索樂晴
So, Leh-Chyan
丘宏昌
Chiu, Hung-Chang
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 財務金融碩士在職專班
Master Program of Finance and Banking
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 33
中文關鍵詞: 隨機森林美國公債期限貼水
外文關鍵詞: Term Structure of Interest Rate, random forest, USTreausry
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在應用隨機森林演算(Random Forest)計算十年期美國公債期限貼水。隨機森林演算法可以處理非線性數據、多特徵資料,不用特徵篩選,對數據集的適應能力強,近年來在機器學習領域受到廣泛的關注。而美國公債被認為是最安全可靠的金融資產之一,不僅是許多金融商品定價基準,更是各國央行去化龐大外匯準備金的重要金融工具,因此殖利率走勢的預期極為重要,其中美國FED也以ACM估計法透過期限結構模型得出不同天期債券的無風險利率(risk neutral yield),再將公債殖利率減去中性利率,即可算出不同天期債券的期限貼水。本研究則運用上述資料與Python機器學習套件Scikit-learn的隨機森林迴歸演算法,預測美國十年期公債期限貼水,發現隨機森林迴歸模型預測殖利率準確率高,因此希望透過此監督式機器學習所建立的迴歸模型,作為輔助預測美國公債殖利率的工具。


    This study aims to apply the random forest method to forecast the 10-year US treasury yield rate and the term premium. The random forest algorithm has strong adaptability to the data, as it can process the nonlinear and multi-feature data without filtering the variables. As a result, it has been highly eye-catching in the field of machine learning in recent years.U.S. Treasury bond is considered to be one of the safest and the most reliable financial asset. It is not only the pricing benchmark for many financial products, but also an important financial tool for the central banks to reduce large foreign exchange reserves. Therefore, it is vital to forecast the movement of yield rates. The FED uses the ACM method to derive the risk neutral yield from the yield curve traded in market through the term structure model, and gets the the term premium by deducting the neutral interest rate from the bond yield rate. This study applies above data and Scikit-learn's random forest regression algorithm machine learning suite in Python to predict the US 10-year term premium, and the accuracy of the regression prediction yield is high. I hope that the regression prediction model established from supervised machine learning could be used as a tool to assist the investors to forecast the yield rate.

    壹、 緒論 1 第一節 前言 1 第二節 研究背景 2 第三節 研究動機與目的 4 貳、 文獻探討 5 第一節 利率期線結構影響因素 5 第二節 殖利率預測方法 12 參、 研究方法與內容 15 第一節 前言 15 第二節 隨機森林模型 15 第三節 解釋變數說明 20 肆、 研究結果 25 第一節 長時間迴歸模型預測 25 第二節 中時間迴歸模型預測 26 第三節 短時間迴歸模型預測 27 伍、 結論 30 陸、 參考文獻 31

    1. 陳嘉添,2019,Fed貨幣政策正常化對期限溢酬之影響,台北外匯市場發展基金會專案計畫。
    2. 袁麗梅,2018,應用機器學習預測台灣十年期公債殖利率,國立臺灣科技大學財務金融研究所碩士論文。
    3. Abrahams, M., T. Adrian, R. Crump and E. Moench. 2015. “Decomposing Real and Nominal Yield Curves.” Federal Reserve Bank of New York Staff Report No. 570.
    4. Adrian, T., R. Crump and E. Moench. 2013. “Pricing the Term Structure with Linear Regressions.” Federal Reserve Bank of New York Staff Report No. 340.
    5. Ball, L., N. G. Mankiw and D. Romer. 1988. “The New Keynesian Economics and the OutputInflation Trade-off.” Brookings Papers on Economic Activity 1988 (1): 1–82.
    6. Barnett Russell and Konrad Zmitrowicz. 2018. “Assessing the Impact of Demand Shocks on the US Term Premium.” Bank of Canada Staff Discussion Paper 2018-7, Jul.
    7. Bauer, G. H. and A. Diez de los Rios. 2012. “An International Dynamic Term Structure Model with Economic Restrictions and Unspanned Risks.” Bank of Canada Working Paper No. 2012-5.
    8. Beltran, D. O., M. Kretchmer, J. Marquez and C. P. Thomas. 2013. “Foreign Holdings of US Treasuries and US Treasury Yields,” Journal of International Money and Finance 32 (1): 1120– 1143.
    9. Bernanke, B. S. 2005. “The Global Savings Glut and the US Current Account Deficit.” Speech at the Sandridge Lecture, Virginia Association of Economists, Richmond, Virginia, March 10.
    10. Bernanke B. S. 2006. “Reflections on the Yield Curve and Monetary Policy,” Board of Governors of the Federal Reserve System, March 20.
    11. Bernanke, B. S. 2015. “Why Are Interest Rates So Low, Part 4: Term Premiums.” Brookings. Available at www.brookings.edu/blogs/ben-bernanke/posts/2015/04/13-interest-rate-term-premiums.
    12. Bertaut, C., L. P. DeMarco, S. Kamin and R. Tryon. 2011. “ABS Inflows to the United States and the Global Financial Crisis.” International Finance Discussion Papers 1028. Washington: Board of Governors of the Federal Reserve System.
    13. Engen, E. M. and R. G. Hubbard. 2004. “Federal Government Debt and Interest Rates.” NBER Working Paper No. 10681.
    14. Engen, E. M., T. Laubach and D. Reifschneider. 2015. “The Macroeconomic Effects of the Federal Reserve’s Unconventional Monetary Policies.” Finance and Economics Discussion Series 2015-005. Washington: Board of Governors of the Federal Reserve System. Available at http://dx.doi.org/10.17016/FEDS.2015.005.
    15. Gagnon, J., M. Raskin, J. Remache and B. Sack. 2010. “Large-Scale Asset Purchases by the Federal Reserve: Did They Work?” Federal Reserve Bank of New York Staff Report No. 441.
    16. Laubach, T. 2009. “New Evidence on the Interest Rate Effects of Budget Deficits and Debt.” Journal of the European Economic Association 7 (4): 858–885.
    17. Li, C. and M. Wei. 2013. “Term Structure Modeling with Supply Factors and the Federal Reserve’s Large-Scale Asset Purchase Programs.” International Journal of Central Banking 9 (1):3–39.
    18. Mankiw, N. G., R. Reiss and J. Wolfers. 2003. “Disagreement about Inflation Expectations.” NBER Working Paper No. 9796.
    19. Purves, Michael. 2018. “The Failed Normalization of the Term Premium?” Weeden & Co. LP’s Trading IQ,Jul. 7.
    20. Wright, J. 2008. “Term Premiums and Inflation Uncertainty: Empirical Evidence from an International Panel Dataset.” Finance and Economics Discussion Series 2008-25. Washington: Board of Governors of the Federal Reserve System.
    21. Wu, T. 2014. “Unconventional Monetary Policy and Long-Term Interest Rates.” IMF Working Paper WP/14/189.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE