研究生: |
賴昶銘 Lai, Chang-Ming |
---|---|
論文名稱: |
直接取樣寬頻雷達系統 於CMOS製程中 A direct sampling boradband radar system in CMOS technology |
指導教授: |
黃柏鈞
Huang, Po-Chiun 朱大舜 Chu, Ta-Shun |
口試委員: |
孟慶宗
Meng, Chin-Chun 張彌彰 Chang, Mi-Chang 王毓駒 Wang, Yu-Jiu 劉怡君 Liu, Yi-Chun |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 147 |
中文關鍵詞: | 雷達 、脈衝 、直接取樣 |
外文關鍵詞: | radar, impulse, direct-sampling |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷達系統已經被廣泛的使用在影像及感測的應用裡,利用電磁波作為偵測媒介,藉此,雷達可以穿透非金屬物質,同時雷達的靈敏度並不會受到嚴苛環境的影響,這些獨特的特色使得雷達與可見光偵測成為了互補的技術,因此,在生醫、行車以及保全的應用上,雷達也逐漸成為了不可或缺的腳色,雖然雷達技術已經發展了數十年,在CMOS製程中,實現高度整合的雷達系統仍然相當罕見,在這個博士論文中,提出並實現了兩個脈衝雷達系統於CMOS中。
第一個晶片為可擴充直接取樣寬頻脈衝雷達,並且支援數位同時多角度陣列,這個雷達晶片具有一個發射機與一個直接取樣接收機,擁有距離偵測的能力,除此之外、數個晶片可以互相合作組成一個雷達系統已偵測角度,這些接收機可以重建反射波型於數位中,因此可以在數位中進行延遲與加總,在數位中,放大、複製與加總可以被無失真的執行,數位的平行陣列處理使得雷達可以同時多角度偵測,藉此以提升雷達的吞吐量,各個雷達單元之間的取樣時間必須同步並且獨立的控制,晶片上的數位時間轉換器藉由一個10 MHz 的信號源同步,數位時間轉換器採用了兩個步驟的時間產生方式,在100 ns的時間範圍中提供了6.35 ps 的解析度,等效上提供了15公尺範圍中0.94 mm的距離解析度,接收機射頻輸入端的10 dB 頻寬為12.7 GHz。最高等效位元數為6.4位元,所提出的架構實現在65-nm的CMOS製程中,晶片面積為1.3 x 1.4 mm2,在1V的供應電壓中,總共的消耗功率為76 mW 。
第二個晶片展示了一個寬頻脈衝時間陣列雷達,並且採用了時間平移直接取樣的架構,在發射機端與接收機端的取樣時間差決定了抵達時間的偵測,四個單元的時間陣列使得雷達系統具有波束成型的能力,不同通道間的時間差則是決定了接收機所偵測的角度,發射機的通道間一樣可以具有不同的時間差,以增強空間選擇的能力,這個直接取樣接收機可以將反射波形重建在數位中,使得數位信號處理可以充分利用這一些資訊,晶片上的數位時間轉換器提供了所需要的時序,並且具有高的解析度與寬的時間平移範圍,所提出的架構具有距離與角度的解析度分別為0.75 公分與3 度,發射機可以在800 ps中使用了10GS/s的取樣率合成各種不同的脈衝,接收機則具有20GS/s 的等效取樣率,所支援的射頻頻寬為2 4GHz,提出的設計實現在0.18 mm CMOS 中,使用的發射機與接收機晶片面積分別為5.4 3.3 mm2與5.4 5.8 mm2。
Radar systems are widely used in wireless imaging and sensing applications. Microwave radio is a detecting media that is capable of penetrating non-metallic materials, and radar sensitivity is not degraded even in severe weather conditions. These unique fea- tures make radar complementary to visible light-based detection. Therefore, radar gradually shows its essential rule in biometric, vehicular, and security applications. Though radar has been devel- oped for decades, a highly integrated radar system in CMOS is still rare. In this dissertation, two impulse radar systems are proposed and implemented in CMOS.
The first chip demonstrates a scalable direct-sampling broadband radar receiver supporting simultaneous digital multi beam array. The chip contains one transmitter and one direct-sampling receiver, which is capable of range estimation. Multiple chips can coop- eratively function as a radar system for azimuth detection. The receivers can reconstruct the scattered waveform into digital such that digital delay-and-sum can be performed. Amplification, du- plication and summation are executed in digital without distor- tion. Parallel array processing in digital is possible to perform si- multaneous multi beam, which enhances the throughput of radar. The sampling time of the receiver elements must be synchronized and controlled independently. The on-chip digital-to-time convert- ers (DTCs) are triggered by a 10-MHz reference source for synchro- nization. The two-step time generation in DTC provides a 6.25-ps resolution over a 100-ns range which is equivalent to a range reso- lution of 0.94 mm over a 15-m range. The receiver has an RF input 10-dB bandwidth of 12.7 GHz with maximal ENOB of 6.4 bit. The proposed architecture is implemented in 65-nm CMOS technology with silicon area of 1.3 × 1.4 mm2. The power consumption is 76 mW under a supply voltage of 1 V.
The second chip presents a broadband impulse radio timed-array radar utilizing a time-shifted direct-sampling architecture. Time shift between the sampling time of the transmitter and the receiver determines the time of arrival (TOA), and a four-element timed array enables beamforming. The different time shifts among the channels at the receiver determine the object’s direction of arrival (DOA). Transmitter channels have different shifts, as well, to en- hance spatial selectivity. The direct-sampling receiver reconstructs the scattered waveform in the digital domain, which provides full freedom to the backend digital signal processing. The on-chip DTC provides all the necessary timing with a fine resolution and wide shift range. The proposed architecture has a range and azimuth resolution of 0.75 cm and 3 degrees, respectively. The transmitter is capable of synthesizing a variety of pulses within 800 ps at a sampling rate of 10 GS/s. The receiver has an equivalent sampling frequency of 20 GS/s while supporting the RF bandwidth from 2 to 4 GHz. The proposed designs were fabricated in a 0.18-µm standard CMOS technology with a die size of 5.4 × 3.3 mm2 and 5.4 × 5.8 mm2 for the transmitter and the receiver, respectively.
[1] G. E. Moore, “Cramming more components onto integrated circuits,”Electronics, vol. 38, no. 8, 1965.
[2] N. Pohl, T. Klein, K. Aufinger, and H.-M. Rein, “A low-power wideband transmitter front-end chip for 80 GHz FMCW radar systems with integrated 23 GHz downconverter VCO,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 1974–1980, Sep. 2012.
[3] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Wantabe, and I. Seto,“A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,”IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
[4] S. S. V. Jain and P. Heydar, “A 22-29 GHz UWB pulse radar receiver frontend in 0.18-um CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1903–1914, Aug. 2009.
[5] S. Lee, C.-Y. Kim, and S. Hong, “A K-band CMOS UWB radar transmitter with a bi phase modulating pulsed oscillator,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1405–1412, May. 2012.
[6] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-StateCircuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
[7] N. Pohl, T. Klein, K. Aufinger, and H.-M. Rein, “A low-power wideband transmitter front-end chip for 80 GHz FMCW radar systems with integrated 23 GHz downconverter VCO,” IEEE J. Solid-State Circuits, vol. 47,no. 9, pp. 1974–1980, Sep. 2012.
[8] P.-H.Wu, J.-K. Jau, C.-J. Li, T.-S. Horing, and P. Hsu, “Vital-sign detection doppler radar based on phase locked self injection oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2006.
[9] F.-K. Wang, T.-S. Horng, K.-C. Pend, J.-K. Jau, and J.-Y. Li, “Singleantenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans.Microw. Theory Tech., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[10] T.-Y. Chin, K.-Y. Lin, S.-F. Chang, and C.-C. Chang, “A fast clutter cancellation method in quadrature doppler radar for noncontact vital signal detection,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 764–767, Jun. 2011.
[11] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, N. Kinayman, N. Jain,R. Anderson, F. Kolak, R. Wohlert, S. P. Bawell, J. Bennett, and J.-P.Lanteri, “Ultra-wideband radar sensors for short range vehicular application,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2105–2122, Sep. 2004.
[12] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503–510, Dec. 2011.
[13] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transeiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[14] M. C. M. Soer, E. A. M. Klumperink, B. Nauta, and F. E. van Vliet, “A 1.0-to-4.0GHz 65nm CMOS four-element beamforming receiver using a switched-capacitor vector modulator with approximate sine weighting via charge redistribution,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2011, pp. 64–66.
[15] A. Natarajan, S. K. Reynolds, M.-D. Tsai, S. T. Nicolson, J.-H. C. Zhan, D. G. Kam, D. Liu, Y.-L. O. Huang, A. Valdes-Garcia, and B. A. Floyd, “A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 2757–2772, May. 2011.
[16] T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273– 2282, Nov. 2010.
[17] Z. Chen, C.-C. Wang, H.-C. Yao, and P. Heydari, “A BiCMOS W-band 2x2 focal-plane array with on-chip antenna,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2355–2371, Oct. 2012.
[18] W. L. Chan and J. R. Long, “A 60-GHz band 2x2 phased-array transmitter in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2682– 2695, Dec. 2010.
[19] L. Lu, A. Li, and H. Luong, “A 4-path 42.8-to-49.5GHz LO generation with automatic phase tuning for 60GHz phased-array receivers,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2011,pp. 270–272.
[20] T.-S. Chu, J. Roderick, S. Chang, T. Mercer, C. Du, and H. Hashemi, “A short-range UWB impulse-radio CMOS sensor for human feature detection,”in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2011, pp. 294–296.
[21] C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Realtime noncoherent UWB positioning radar with millimeter range accuracy theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 3577–3587, Jan. 2010.
[22] L. Stoica, S. Tiuraniemi, I. Oppermann, and H. Repo, “An ultra wide band low complexity circuit transceiver architecture for sensor networks,” in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), Feb. 2005, pp. 364–367.
[23] Z. N. Low, J. H. Cheong, C. L. Law, W. T. Ng, and Y. J. Lee, “Pulse detection alorithm for line-of-sight(LOS) UWB ranging applications,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 4, pp. 63–67, Apr. 2005.
[24] D. Dardari, C.-C. Chong, and M. Z. Win, “Threshold-based time-ofarrival estimators in UWB dense multiplath channels,” IEEE Trans. Commun., vol. 56, no. 9, pp. 1366–1376, Aug. 2008.
[25] I. Sharp, K. Yu, and Y. Guo, “Peak and leading edge detection for timeof- arrival estimation in band-limited positioning systems,” IET Commun., vol. 3, no. 10, pp. 1616–1627, Oct. 2009.
[26] I. Guvenc and Z. Sahinoglu, “Threshold selection for UWB TOA estimation based on kurtosis analysis,” IEEE Commun. Lett., vol. 9, no. 12, pp. 1025–1027, Dec. 2005.
[27] S. Bagga, L. Zhang, W. A. Serdijn, J. R. Long, and F. Zito, “A quantized analog delay for an ir-UWB quatrature down conversion autocorrelation receiver,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sep. 2005, pp. 328–332.
[28] M. Pausini and M. J. M. Janssen, “Performance analysis of UWB autocorrelation receivers over Nakagami-fading channels,” IEEE J. Sel. Areas Commun., pp. 443–455, Oct. 2007.
[29] D. Zito, D. Pepe, M. Mincica, and F. Zito, “A 90nm CMOS SoC UWB pulse radar for respiratory rate monitoring,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2011, pp. 40–41.
[30] T. Terada and T. Kuroda, “A CMOS ultra-wide-band impulse radio transceiver for 1-Mb/s data communications and 2.5-cm range finding,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 891–898, Apr. 2006.
[31] J. Dederer, B. Schleicher, F. D. A. T. Santos, A. Trasser, and H. Schumacher, “FCC compliant 3.1-10.6 GHz UWB pulse radar system using correlation detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1471–1474.
[32] I. Güvenç, Z.S. ahino˘ glu, and P. Orlik, “TOA estimation for IR-UWB system with different transceiver types,” in IEEE Conf. Ultra-Wideband (ICU), Sep. 2005, pp. 426–431.
[33] J.-Y. Lee and R. A. Scholts, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Commun., vol. 20, no. 9, pp. 1677–1683, Dec. 2002.
[34] L. Mucchi, D. Dadari, C. Falsi, and M. Z. Win, “Range estimation in UWB realistic environments,” in IEEE International Conference on Communications (ICC), Jun. 2006, pp. 5962–5967.
[35] S. Chang, M. Wolf, and J. W. Burdick, “Human detection and tracking via ultra-wideband (UWB) radar,” in Proc. IEEE Robotics and Automation, May. 2010, pp. 452–457.
[36] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, pp. 10–21, 1949.
[37] M. Parlak, M. Matsuo, and J. F. Buckwalter, “Analog signal processing for pulse compression radar in 90-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3810–3822, Dec. 2012.
[38] B. Razavi, RF Microelectronics (2nd edition). Prentice Hall, 2011.
[39] T.-S. Chu, J. Roderick, and H. Hashemi, “A 4-channel UWB beam-former in 0.13um CMOS using a path-sharing ture-time-delay architecture,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2007, pp. 426–427.
[40] T.-S. Chu and H. Hashemi, “A CMOS UWB camera with 7x7 simultaneous active pixels,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2008, pp. 120–121.
[41] C.-M. Lai, K.-W. Tan, L.-Y. Yu, Y.-J. Chen, J. W. Huang, S.-C. Lai, F.- H. Chung, C.-F. Yen, J.-M. Wu, P.-C. Huang, K.-J. Chang, S.-Y. Huang, and T.-S. Chu, “A UWB IR timed-array radar using time-shifted directsampling architecture,” in IEEE Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2012, pp. 54–55.
[42] C.-M. Lai, J.-M. Wu, P.-C. Huang, and T.-S. Chu, “A scalable directsampling broadband radar receiver supporting simultaneous digital multibeam array in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2012, pp. 242–243.
[43] S. Smith, Microelectronics Circuits (5th edition). Oxford, U.K.: Oxford Univ. Press, 2004.
[44] M. Dessouky and A. Kaiser, “Input switch configuration suitable for railto- rail operation of switched opamp circuits,” IEEE Electron. Lett., vol. 35,no. 1, pp. 8–10, Jan. 1999.[45] Y. Yu, P. G. M. Baltus, A. J. M. de Graauw, E. van der Heijden, M. Collados,C. Vaucher, and A. H. M. van Roermund, “A 60 GHz digitally controlled RF-beamforming receiver front-end in 65nm CMOS,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 211–214.
[46] K.-J. Koh and G. Regeiz, “0.13 um CMOS phase shifter for X-, Ku-, and K-band phase arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535–2546, Nov. 2007.
[47] S. Patnaik, N. Lanka, and R. Harjani, “A dual-mode architecutre for a phased-array receiver based on injection locking in 0.13um CMOS,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2009, pp. 490–492.
[48] S. Jeon, Y.-J. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, and A. Hajimiri, “A scalable 6-to-18 GHz concurrent dual-band quadbeam phased-array receiver in CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2660–2673, Dec. 2008.
[49] C.-M. Lai, J.-M. Wu, P.-C. Huang, K.-J. Chang, S.-Y. Huang, and T.-S. Chu, “A scalable direct-sampling broadband radar receiver supporting simultaneous digital multibeam array in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2013, pp. 242–243.
[50] T. Norimatsu, R. Fujiwara, M. Kokubo, M. Miyazaki, A. Maeki, Y. Ogata,S. Kobayashi, N. Koshizuka, and K. Sakamura, “A UWB-IR transmitterwith digitally controlled pulse generator,” IEEE J. Solid-State Circuits,vol. 42, no. 6, pp. 1300–1309, Jun. 2007.
[51] P. P. Mercier, D. C. Daly, and A. P. Chandrakasan, “A 30-GS/sec trackand hold amplifier in 0.13-um CMOS technology,” in Proc. IEEE CustomIC Conf. (CICC),, Sep. 2006, pp. 493–496.
[52] J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loops,” IEEE Power Electron.Lett., vol. 36, no. 23, pp. 1907–1908, Nov. 2000.
[53] L. Sun and T. A. Kwasniewski, “A 1.25-GHz 0.35-um monolithic CMOSPLL based on a multiphase ring oscillator,” IEEE J. Solid-State Circuits,vol. 36, no. 6, pp. 910–916, Jun. 2001.
[54] Y. A. E. and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 230–233,Jan. 2004.
[55] Z. N. Low, J. H. Cheong, and C. L. Law, “Low-cost PCB antenna for UWB applications,” IEEE AntennasWireless Propag. Lett., no. 4, pp. 237–239, Jan.2005.
[56] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of highspeed sampling systems,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp.220–224, Feb. 1990.