簡易檢索 / 詳目顯示

研究生: 吳政機
Wu, Cheng-Chi
論文名稱: 利用演化法為基礎的階層式特徵融合法-應用於超音波肝臟組織之特徵描述
Evolution-based Hierarchical Feature Fusion for Ultrasonic Liver Tissue Characterization
指導教授: 陳永昌
Chen, Yung-Chang
鐘太郎
Jong, Tai-Lang
口試委員: 盧鴻興
黃仲陵
黃文良
林嘉文
陳永昌
鍾太郎
李文立
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 107
中文關鍵詞: 肝臟組織超音波特徵融合階層式演化法
外文關鍵詞: ultrasound, liver, feature fusion, hierarchical, evolution
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝癌及肝硬化是兩種很常見的肝臟疾病,針對此兩類肝臟疾病而言,早期發現及早期治療可以提升治療的效果,而肝臟超音波影像即是用以執行例行性肝臟檢查、以利早期診斷最常用的工具。然而目前之超音波肝臟組織辨識主要仰賴醫師辨認影像中特定的紋理特徵,透過電腦視覺系統的分析,我們希望輔助醫生做出更精確的診斷。而在實現此一系統時,影像的特徵擷取是相當重要的一環;在超音波肝臟影像的辨識應用中,已有多種的特徵擷取法被提出,其中包含了以M-頻段小波轉換為基礎的碎形特徵向量及能量、以Gabor濾波器為基礎的碎形特徵向量及能量、共生矩陣紋理分析法(Spatial Grey Level Dependence Matrix,SGLDM)等。

    本論文主要探討的問題是:是否可以透過結合不同的特徵向量,並經由適當的特徵選取機制,選出重要的特徵提升辨識的準確性?我們提出了一個利用演化法為基礎的階層式特徵融合法,可以透過一個階層式的架構,從多個特徵向量中,選出具有鑑別度的特徵來執行肝臟超音波織織辨識。首先,我們利用不用的特徵擷取法,取出多個特徵向量。在系統的第一層,演化法為基礎的特徵選取法選出個別特徵向量的特徵子集;接著多個特徵子集透過特徵融合法合併成融合後之特徵子集。最後,再執行提出之特徵選取法選出最後用以辨別之特徵。

    經由實驗顯示,利用此一系統所選出的融合特徵子集相較於個別特徵向量所選取之特徵子集,可以達到更高的辨識正確率,也驗證了此一系統可以從多個特徵向量中,找出具鑑別度的特徵,用以辦別正常肝、肝硬化、肝癌等三類的超音波肝臟影像。


    1 Introduction 1.1 Motivation 1.2 Background and Related Works 1.3 Contributions 1.4 Thesis Organization 2 Feature Extraction 2.1 Introduction 2.2 Multi-resolution Feature Vectors 2.2.1 M-band Wavelet Transform 2.2.2 The Gabor Filter Bank 2.2.3 Texture Feature Representation by the Fractal Model 2.2.4 Texture Feature Representation by Energy and Energy Deviation 2.3 SGLDM 2.4 Summary 3 Evolution-based Feature Selection 3.1 PSO-based Feature Selection 3.1.1 Introduction 3.1.2 Implementation 3.2 GA-based Feature Selection 3.2.1 Introduction 3.2.2 Implementation 3.3 ACO-based Feature Selection 3.3.1 Initialization 3.3.2 Ant Solution Construction 3.3.3 Local Search 3.3.4 Pheromone Update 3.4 Fitness Function 3.5 Pattern Classifiers 3.5.1 k-Nearest Neighbor (kNN) Classifier 3.5.2 Fuzzy k-Nearest Neighbor (Fuzzy-kNN) Classifier 3.5.3 Probabilistic Neural Network (PNN) 3.5.4 Support Vector Machine (SVM) 3.6 Summary 4 Evolution-based Hierarchical Feature Fusion 4.1 Introduction 4.2 Decision Fusion 4.2.1 Class Labels Combinations 4.2.2 Class Ranking 4.2.3 Soft Combination 4.3 Feature Fusion 4.3.1 Serial Feature Fusion (SFF) 4.3.2 Parallel Feature Fusion 4.4 Evolution-based Hierarchical Feature Fusion Scheme 4.5 Summary 5 Experimental Results 5.1 Ultrasonic Liver Image Dataset 5.1.1 Feature Selection Results 5.1.2 Comparisons of Three Feature Fusion Schemes 5.1.3 Computational Complexity 5.2 Public Datasets 5.2.1 Data Set Descriptions 5.2.2 Results 6 Conclusions and Future Works 6.1 Summary and Conclusions 6.2 Suggestions for Future Research

    [1] B. S. Garra, M. F. Insana, T. H. Shawker, R. F. Wagner, M. Bradford, and M. Russell, “Quantitative ultrasonic detection and classification of diffuse liver disease: Comparison with human observer performance,” Investigative radiology, vol. 24, pp. 196–203, 1989.
    [2] H. Yu, C. Caldwell, K. Mah, and D. Mozeg, “Coregistered fdg pet/ct-based textural characterization of head and neck cancer for radiation treatment planning,” IEEE Transactions on Medical Imaging, vol. 28, no. 3, pp. 374–383, Mar. 2009.
    [3] R. Llobet, J. C. Perez-Cortes, A. H. Toselli, and A. Juan, “Computer-aided detection of prostate cancer,” International Journal of Medical Informatics, vol. 76, no. 7, pp. 547 – 556, 2007.
    [4] A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 153 –158, Feb. 1997.
    [5] W.-L. Lee, Y.-C. Chen, and K.-S. Hsieh, “Ultrasonic liver tissues classification by fractal feature vector based on m-band wavelet transform,” IEEE Transactions on Medical Imaging, vol. 22, no. 3, pp. 382–392, 2003.
    [6] C.-M. Wu and Y.-C. Chen, “Multi-threshold dimension vector for texture analysis and its application to liver tissue classification,” Pattern Recognition, vol. 26, no. 1, pp. 137 – 144, 1993.
    [7] H. Gao and W. Xu, “A new particle swarm algorithm and its globally convergent modifications,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 5, pp. 1334 –1351, Oct. 2011.
    [8] D. Muni, N. Pal, and J. Das, “Genetic programming for simultaneous feature selection and classifier design,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 1, pp. 106 –117, Feb. 2006.
    [9] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1424 –1437, Nov. 2004.
    [10] M. Dorigo and T. St¨utzle, Ant Colony Optimization, ser. A Bradford book. University Press Group Limited, 2004. [Online]. Available: http://books.google.com.tw/books?id=\ aefcpY8GiEC
    [11] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Neural Networks, IEEE International Conference on, vol. 4, 1995, pp. 1942–1948.
    [12] B. Dasarathy, Decision Fusion. Computer Society Press, 1994.
    [13] M. Qian, M. Aguilar, K. Zachery, C. Privitera, S. Klein, T. Carney, and L. Nolte, “Decision-level fusion of eeg and pupil features for single-trial visual detection analysis,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 7, pp. 1929 –1937, Jul. 2009.
    [14] A. S. Constantinidis, M. C. Fairhurst, and A. F. R. Rahman, “A new multiexpert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms,” Pattern Recognition, vol. 34, no. 8, pp. 1527 – 1537, 2001.
    [15] L. Kuncheva and L. Jain, “Designing classifier fusion systems by genetic algorithms,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, pp. 327 – 336, Nov. 2000.
    [16] S. Ahmed, K. Iftekharuddin, and A. Vossough, “Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in mri,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 2, pp. 206 –213, Mar. 2011.
    [17] Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognition, vol. 38, no. 12, pp. 2437 – 2448, 2005.
    [18] J. Yang, J.-Y. Yang, D. Zhang, and J.-F. Lu, “Feature fusion: parallel strategy vs. serial strategy,” Pattern Recognition, vol. 36, no. 6, pp. 1369 – 1381, 2003.
    [19] U. Mangai, S. Samanta, S. Das, and P. Chowdhury, “A Survey of Decision Fusion and Feature Fusion Strategies for Pattern Classification,” IETE Technical Review, vol. 27, no. 4, pp. 293–307, 2010.
    [20] N. Tsiaparas, S. Golemati, I. Andreadis, J. Stoitsis, I. Valavanis, and K. Nikita, “Comparison of multiresolution features for texture classification of carotid atherosclerosis from b-mode ultrasound,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 1, pp. 130 –137, Jan. 2011.
    [21] H. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang, “Automated breast cancer detection and classification using ultrasound images: A survey,” Pattern Recognition, vol. 43, no. 1, pp. 299 – 317, 2010.
    [22] S. Li and J. Shawe-Taylor, “Comparison and fusion of multiresolution features for texture classification,” Pattern Recognition Letters, vol. 26, no. 5, pp. 633– 638, 2005.
    [23] H. Yoshida, D. D. Casalino, B. Keserci, A. Coskun, O. Ozturk, and A. Savranlar, “Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images,” Physics in Medicine and Biology, vol. 48, no. 22, pp. 3735–3753, 2003.
    [24] B. B. Mandelbrot, The Fractal Geometry of Nature, 1st ed. W. H. Freeman, Aug. 1982.
    [25] Y. M. Ro, M. Kim, H. K. Kang, B. S. Manjunath, and J. Kim, “Mpeg-7 homogeneous texture descriptor,” ETRI Journal, vol. 23, pp. 41–51, 2001.
    [26] J. Wu, G. An, and Q. Ruan, “Independent gabor analysis of discriminant features fusion for face recognition,” Signal Processing Letters, IEEE, vol. 16, no. 2, pp. 97 –100, Feb. 2009.
    [27] G. Ascensi and J. Bruna, “Model space results for the gabor and wavelet transforms,” IEEE Transactions on Information Theory, vol. 55, pp. 2250–2259, May 2009.
    [28] J. Li, Q. Du, and C. Sun, “An improved box-counting method for image fractal dimension estimation,” Pattern Recognition, vol. 42, no. 11, pp. 2460 – 2469, 2009.
    [29] B. S. Raghavendra and D. N. Dutt, “Computing fractal dimension of signals using multiresolution box-counting method,” International Journal of Information and Mathematical Sciences, vol. 6, no. 1, pp. 50–65, 2010.
    [30] W.-L. Lee and K.-S. Hsieh, “A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images,” Signal Processing, vol. 90, no. 6, pp. 1894–1904, 2010.
    [31] W. T. Reeves, “Particle systems-a technique for modeling a class of fuzzy objects,” ACM Trans. Graph., vol. 2, no. 2, pp. 91–108, Apr. 1983. [Online]. Available: http://doi.acm.org/10.1145/357318.357320
    [32] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ser. SIGGRAPH ’87. New York, NY, USA: ACM, 1987, pp. 25–34. [Online]. Available: http://doi.acm.org/10.1145/37401.37406
    [33] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: A pso approach,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 47, no. 1, pp. 367–380, 2011.
    [34] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.
    [35] A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. part i: background and development,” Natural Computing, vol. 6, no. 4, pp. 467–484, 2007. [Online]. Available: http://dx.doi.org/10.1007/s11047-007-9049-5
    [36] S. Bayer and L. Wang, “A genetic algorithm programming environment: Splicer,” in Tools for Arti_cial Intelligence, 1991. TAI '91., Third Interna-tional Conference on, 1991, pp. 138–144.
    [37] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,” Dec. 2011. [Online]. Available: http://arxiv.org/abs/1109.3627
    [38] S. Yu, X. Guo, K. Zhu, and J. Du, “A neuro-fuzzy ga-bp method of seismic reservoir fuzzy rules extraction,” Expert Systems with Applications, vol. 37, no. 3, pp. 2037 – 2042, 2010. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0957417409006423
    [39] K. Fukunaga, Introduction to statistical pattern recognition (2nd ed.). San Diego, CA, USA: Academic Press Professional, Inc., 1990.
    [40] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” IEEE Transactions On Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.
    [41] H. Huang, H.-B. Xie, J.-Y. Guo, and H.-J. Chen, “Ant colony optimizationbased feature selection method for surface electromyography signals classification,” Comput. Biol. Med., vol. 42, no. 1, pp. 30–38, Jan. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.compbiomed.2011.10.004
    [42] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi_cation (2nd Edition), 2nd ed. Wiley-Interscience, Nov. 2000.
    [43] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, pp. 580–585, 1985.
    [44] D. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 111 –121, Mar. 1990.
    [45] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design. Boston, MA, USA: PWS Publishing Co., 1996.
    [46] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
    [47] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed. Springer, Oct. 2007.
    [48] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods: Support Vector Learning, B. Schlkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 42–65.
    [49] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using the second order information for training svm,” Journal of Machine Learning Research, vol. 6, pp. 1889–1918, 2005.
    [50] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, software available at http://www.csie.ntu.edu.tw/_cjlin/libsvm.
    [51] Y. S. Ng and R. Srinivasan, “Multi-agent based collaborative fault detection and identification in chemical processes,” Engineering Applications of Arti_cial Intelligence, vol. 23, no. 6, pp. 934 – 949, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095219761000059X
    [52] T. K. Ho, J. Hull, and S. Srihari, “Decision combination in multiple classifier systems,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, no. 1, pp. 66–75, 1994.
    [53] L. I. Kuncheva, Combining Pattern Classi_ers: Methods and Algorithms. Wiley-Interscience, 2004.
    [54] T. Paul and H. Iba, “Prediction of cancer class with majority voting genetic programming classifier using gene expression data,” Computational Biology and Bioinformatics, IEEE/ACM Transactions on, vol. 6, no. 2, pp. 353–367, 2009.
    [55] P. D. Gader, M. A. Mohamed, and J. M. Keller, “Fusion of handwritten word classifiers,” Pattern Recogn. Lett., vol. 17, no. 6, pp. 577–584, May 1996. [Online]. Available: http://dx.doi.org/10.1016/0167-8655(96)00021-9
    [56] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy,” Mach. Learn., vol. 51, no. 2, pp. 181–207, May 2003. [Online]. Available: http://dx.doi.org/10.1023/A:1022859003006
    [57] C. Liu and H.Wechsler, “A shape- and texture-based enhanced fisher classifier for face recognition,” Image Processing, IEEE Transactions on, vol. 10, no. 4, pp. 598–608, 2001.
    [58] L. Andreana, G. Isgro, M. Pleguezuelo, G. Germani, and A. K. Burroughs, “Surveillance and diagnosis of hepatocellular carcinoma in patients with cirrhosis,” World Journal of Hepatology, vol. 1(1), pp. 48–61, 2009.
    [59] R. Badea and S. Ioanitescu, Liver Tumors. InTech, 2012, ch. Ultrasound Imaging of Liver Tumors Current Clinical Applications, pp. 75–102.
    [60] T. Song, M. Jamshidi, R. Lee, and M. Huang, “A modified probabilistic neural network for partial volume segmentation in brain mr image,” IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1424 –1432, Sep. 2007.
    [61] Y. Sela, M. Freiman, E. Dery, Y. Edrei, R. Safadi, O. Pappo, L. Joskowicz, and R. Abramovitch, “fmri-based hierarchical svm model for the classification
    and grading of liver fibrosis,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2574 –2581, Sep. 2011.
    [62] J. H. Lefkowitch, Hepatology: a Textbook of liver Disease, 1990, ch. Pathologic diagnosis of liver disease, p. 719.
    [63] M. Kudo and J. Sklansky, “Comparison of algorithms that select features for pattern classifiers,” Pattern Recognition, vol. 33, no. 1, pp. 25 – 41, 2000.
    [64] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online]. Available: http://archive.ics.uci.edu/ml
    [65] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, “Classification of radar returns from the ionosphere using neural networks,” Johns Hopkins APL Tech. Dig, vol. vol. 10, pp. 262–266, 1989.
    [66] P. Estevez, M. Tesmer, C. Perez, and J. Zurada, “Normalized mutual information feature selection,” IEEE Transactions on Neural Networks, vol. 20, no. 2, pp. 189 –201, Feb. 2009.
    [67] Y.-R. Yeh, T.-C. Lin, Y.-Y. Chung, and Y.-C.Wang, “A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection,” Multimedia, IEEE Transactions on, vol. 14, no. 3, pp. 563–574, 2012.
    [68] J. Yang, A. Bouzerdoum, F. H. C. Tivive, and S. L. Phung, “Dimensionality reduction using compressed sensing and its application to a large-scale visual recognition task.” in WCCI 2010 IEEE World Congress on Computational Intelligence. IEEE, 2010, pp. 1607–1617. [Online]. Available: http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2010.html#YangBTP10

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE