研究生: |
蔡泓文 |
---|---|
論文名稱: |
脈衝式側向振盪噴流之熱流場研究 |
指導教授: | 許文震 |
口試委員: |
王訓忠
陳炎洲 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 振盪噴流 、正弦波 |
相關次數: | 點閱:55 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文探討衝擊噴流方向平行於加熱源之配置下,分別對於穩態噴流與帶有正弦波訊號之震盪噴流與帶有方波訊號之震盪噴流進行綜合探討,並試圖在給予的頻率週期內觀察流場各監測點之速度行為是否也會產生週期性的變化,進一步推斷流場溫度的週期性變化行為,期望能觀察因週期性輸入速度帶動空間流場的週期性行為,進而影響流場變化與溫度變化行為。
透過模擬軟體Fluent,模擬脈衝式側向震盪噴流對於一具有定熱通量之加熱片的熱傳行為。本文歸納出,當輸入的間歇衝擊噴流為正弦波時,在本文所設定參數範圍內,發現頻率參數f=10Hz,由於震盪速度過快,使得流場中監測點之速度變化不如f=1Hz、 2Hz 、3Hz。在本文設定頻率範圍內,可使得流場中設置的監測點之速度具有正弦波特性之變化,且使得各監測點之溫度變化具有規則性。而當衝擊噴流之震盪行為由正弦波改為方波時,發現最佳頻率由正弦波頻率1Hz變動為方波頻率10Hz,而其震盪行為越接近噴流出口則越具規律且明顯,越遠離噴流出口則震盪幅度越趨緩。最後提出,透過改變間歇衝擊噴流之震盪幅度對於加熱片溫度場之影響,其作用大於改變間歇噴流之震盪頻率與波形。
第 六 章 參考文獻
[1] M. B. Glauert, "The Wall Jet," Journal of Fluid Mechanics, vol. 1, pp. 625-643, 1956.
[2] R. G. Nevins and H. D. Ball, "Heat Transfer Between A Flat Plate and A Pulsating Impinging Jet," Proceedings of the National Heat Transfer Conference, vol. 60, pp. 510-516, 1961.
[3] R. Gardon and J. C. Akfirat, "Heat Transfer Characteristics of Impinging 2-Dimensional Air Jets," Journal of Heat Transfer, vol. 88, pp. 101-109, 1966.
[4] D. M. Kercher and W. Tabakoff, "Heat Transfer by A Square Array of Round Air Jets Impinging Perpendicular to A Flat Surface Including Effect of Spent Air," Journal of Engineering for Power, vol. 92, pp. 73-80, 1970 1970.
[5] M. Wolfshtein, "Some Solutions of the Plane Turbulent Impinging Jet," Journal of Basic Engineering, vol. 92, pp. 915-922, 1970.
[6] D. E. Metzger, K. N. Cumming and W. A. Ruby, "Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets," in Proceedings of the 5th International Heat Transfer Conference, Washington ,DC, 1974, pp. 20-24.
[7] R. J. Goldstein and J. F. Timmers, "Visualization of Heat-Transfer from Arrays of Impinging Jets," International Journal of Heat and Mass Transfer, vol. 25, pp. 1857-1868, 1982.
[8] R. K. Agarwal and W. W. Bower, "Navier-Stokes Computation of Turbulent Compressible Two-Dimensional Impinging Jet Flow Fields," AIAA journal, vol. 20, pp. 577-584, 1982.
[9] K. Kataoka, M. Suguro, H. Degawa, K. Maruo, and I. Mihata, "The Effect of Surface Renuwal due to Large-Scale Eddies on Jet Impingingment Heat-Transfer," International Journal of Heat and Mass Transfer, vol. 30, pp. 559-567, Mar 1987.
[10] S. A. Sherif and R. H. Pletcher, "Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow," Journal of Heat Transfer, vol. 111, pp. 897-903, 1989.
[11] R. J. Goldstein, K. A. Sobolik, and W. S. Seol, "Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface," Journal of Heat Transfer, vol. 112, pp. 608-611, 1990.
[12] X. Liu, J. H. Lienhard, and J. S. Lombara, "Convective Heat Transfer by Impingement of Circular Liquid Jets," Journal of Heat Transfer, vol. 113, pp. 571-582, 1991.
[13] D. J. Womac, S. Ramadhyani, and F. P. Incropera, "Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets," Journal of Heat Transfer, vol. 115, pp. 106-115, 1993.
[14] H. S. Sheriff and D. A. Zumbrunnen, "Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet," Journal of Heat Transfer, vol. 116, pp. 886-895, 1994.
[15] D. A. Zumbrunnen and M. Aziz, "Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet," Journal of Heat Transfer, vol. 115, pp. 91-98, 1993.
[16] R. A. Eibeck, J. O. Keller, T. T. Bramlette, and D. J. Sailor, "Pulse Combustion: Impinging Jet Heat Transfer Enhancement 1," Combustion Science and Technology, vol. 94, pp. 147-165,1993.
[17] B. Elison and B. W. Webb, "Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes," International Journal of Heat and Mass Transfer, vol. 37, pp. 1207-1216, 1994.
[18] L. F. A. Azevedo, B. W. Webb, and M. Queiroz, "Pulsed air jet impingement heat transfer," Experimental Thermal and Fluid Science, vol. 8, pp. 206-213, 1994.
[19] C. F. Ma, Q. Zheng and S. C. Lee, "Impingement heattransfer and recovery effect with submerged jets of large Prandtlnumberliquid—Ⅱ. Initially Laminar Confined Slot Jets," International Journal of Heat and Mass Transfer, vol. 40, pp. 1491-1500, 1997.
[20] E. C. Mladin and D. A. Zumbrunnen, "Local convective heat transfer to submerged pulsating jets," International Journal of Heat and Mass Transfer, vol. 40, pp. 3305-3321, 1997.
[21] D. J. Rohli. David J. Sailor, Qianli Fu, "Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet," International Journal of Heat and Fluid Flow, vol. 20, pp. 574-580, 1999.
[22] D. L. James, J. A. Castleberry, and J. Y. Pak, "Pulsed radial jet reattachment nozzle," International Journal of Heat and Mass Transfer, vol. 42, pp. 2921-2933, 1999.
[23] M. Angioletti, R. M. Di Tommaso, E. Nino, and G. Ruocco, "Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets," International Journal of Heat and Mass Transfer, vol. 46, pp. 1703-1713, 2003.
[24] A. J. Bula and M. M. Rahman, "Transient Thermal Management of Microelectronics Using Free Liquid Jet Impingement," ASME Conference Proceedings, vol. 2004, pp. 35-42, 2004.
[25] H. J. Poh, K. Kumar, and A. S. Mujumdar, "Heat transfer from a pulsed laminar impinging jet," International Communications in Heat and Mass Transfer, vol. 32, pp. 1317-1324, 2005.
[26] A. Abdel-Fattah, "Numerical and experimental study of turbulent impinging twin-jet flow," Experimental Thermal and Fluid Science, vol. 31, pp. 1061-1072, 2007.
[27] R. S. Zulkifli, K., "Studies On Pulse Jet Impingment Heat Transfer Flow Profile and Effect of Pulse Frequencies On Heat Transfer," International Journal of Engineering and Technology, vol. 4, pp. 86-94, 2007.
[28] X. Jiang, H. Zhao, and K. H. Luo, "Direct Computation of Perturbed Impinging Hot Jets," Computers & Fluids, 2007, pp. 259-272.
[29] R. C. Behera, P. Dutta and K. Srinivasan, "Numerical Study of Interrupted Impinging Jets for Cooling of Electronics," IEEE Transactions on Components and Packaging Technologies, vol. 30, pp. 275-284, 2007.
[30] L. B. Y. Aldabbagh and A. A. Mohamad, "A Three-Dimensional Numerical Simulation of Impinging Jet Arrays On A Moving Plate," International Journal of Heat and Mass Transfer, vol. 52, pp. 4894-4900, 2009.
[31] B. N. Hewakandamby, "A Numerical Study of Heat Transfer Performance of Oscillatory Impinging Jets," International Journal of Heat and Mass Transfer, vol. 52, pp. 396-406, 2009.
[32] F. Baffigi and C. Bartoli, "Heat Transfer Enhancement in Natural Convection Between Vertical and Downward Inclined Wall and Air by Pulsating Jets," Experimental Thermal and Fluid Science, vol. 34, pp. 943-953, 2010.
[33] M. F. Koseoglu and S. Baskaya, "The Role of Jet Inlet Geometry in Impinging Jet Heat Transfer, Modeling and Experiments," International Journal of Thermal Sciences, vol. 49, pp. 1417-1426, 2010.
[34] P. Xu, B. Yu, S. Qiu, H. J. Poh, and A. S. Mujumdar, "Turbulent Impinging Jet Heat Transfer Enhancement due to Intermittent Pulsation," International Journal of Thermal Sciences, vol. 49, pp. 1247-1252, 2010.
[35] Y. Zhong and T. Fang, "Unsteady Stagnation-point Flow Over A Plate Moving Along The Direction of Flow Impingement," International Journal of Heat and Mass Transfer, vol. 54, pp. 3103-3108, 2011.
[35] P. Tim, M. Alan and D. B. Murray, "A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet," International Journal of Heat and Mass Transfer, vol. 54, pp. 3900-3908, 2011.