簡易檢索 / 詳目顯示

研究生: 劉毓鈞
Liu, Yu-Chun
論文名稱: 設計與製作微型之寬波段近紅外光源
Design and Fabrication of Near-Infrared Broadband Micro-Light Source
指導教授: 吳孟奇
Wu, Meng-Chyi
何充隆
Ho, Chong-Long
口試委員: 劉埃森
陳尚甫
Chen, Shang-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 89
中文關鍵詞: 近紅外光光子晶體懸浮製程鎢絲
外文關鍵詞: near-infared, photonic crystal, suspension, tungsten
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在此研究中,利用半導體製程之技術,於矽基板上製作一微型鎢絲燈源。於燈絲上設計不同週期之光子晶體結構,期望藉由此結構將發光範圍侷限在近紅外之波段,以達本研究之目的。我們將確立元件之製程流程,並採用兩種不同製程進行元件之製作與改善。在舊製程中,面臨一些製程上之難題,其一為鎢絲無法在高溫下進行熱退火處理,因而無法得到低阻值之鎢薄膜,致使後續之元件量測,電流不易通過燈絲區域,熱無法累積在鎢絲上,燈絲不易發光。另一則為後續之掏空製程,易受液體之表面張力影響,元件易有塌陷之問題,促使良率過低。在新製程中,能將此兩項問題有效的解決。
    本論文將對薄膜沉積進行探討,利用四點探針、SEM、EDS、XRD,分析不同薄膜之特性,建立良好之薄膜沉積參數。在元件之量測上,亦使用NKT系統與真空光電探針系統,進行元件之反射率及燈絲發光譜之量測。


    Abstract 
      In this study, we use the technology of semiconductor process to fabricate a Micro-filament on the silicon substrate. We designed the photonic crystal structures with different period on the filament and expected that structure can confined the band to achieve the purpose of this study. We will establish the process flow, and use two different processes. In the old process, we faced with some problems. One is the annealing process can’t at high temperature, and therefore can’t obtain a low resistance for tungsten film, that caused the current through the filament area hardly in the subsequent measurement. Because the heat can’t be accumulated on the tungsten and the filament emitted difficultly. The other is the suspended process, was easily influenced by surface tension of liquids. The devices tend to collapse and reduced yield. In the new process, the two problems can be effectively solved.
    This study will discuss the properties of different films, using four-point probe, SEM, EDS, XRD, analyze the characteristics of different films and establish better deposited parameters. We also use NKT system and vacuum probe system for measuring reflectance and emission spectral of the device.

    Content 中文摘要 I Abstract II Acknowledgements III Contents IV List of Figure V List of Table XI 1-1 Introduction 1 1-2 Motivation 4 Chapter 2 Theoretical Basic 7 2-1 Photonic Crystals 7 2-1-1 PWE 10 2-2 Black Body Radiation 14 Chapter 3 Experimental Process 19 3-1 Experimental Design 19 3-2 Design of Mask 21 3-3 Fabrication Process of Micro-filament 24 3-3-1 Experimental details – with sacrificial layer 25 3-3-2 Experimental details – without sacrificial layer 30 3-4 Established Pre-procedure for Sealed Packaging 35 Chapter 4 Results and Discussion 39 4-1 Characteristics of Commercially Available Miniature Bulbs 39 4-1-1 Basic Measurement 39 4-1-2 I-V Measurement 41 4-1-3 Spectrum Measurement 44 4-1-4 Latency Measurement 46 4-2 Fabrication Process of Metallic Photonic Crystals Filament 51 4-2-1 The Deposition Condition of Tungsten Thin Film 51 4-2-2 The Resistivity of Tungsten Thin Film 55 4-2-3 Established Pattern Filament – Photonic Crystals 60 4-2-4 Established Isolation Layer with Excellent Step Coverage 63 4-2-5 Suspension Process for Micro-filament 65 4-2-6 The Results after XeF2 Si Isolation 69 4-3 The Measurement for Micro-filament 72 4-3-1 Reflectance Measurement 72 4-3-2 I-V measurement in Vacuum Probe System 77 4-3-3 Established Integrating Sphere System 84 Chapter 5 Conclusion 86 Reference 87

    Reference
    [1] http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html
    [2] http://pressroom.geconsumerproducts.com/pr/ge/HE_lamps_07.aspx
    [3] S. Y. Lin, J. G. Fleming, and I. E. Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett., 28, 1909, 2003.
    [4] S. Y. Lin, J. Moreno, and J. G. Fleming, “3D photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett., 83, 380, 2003.
    [5] Eli Yablanovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 20, 2059, 1987.
    [6] http://www.laserfocusworld.com/articles/2011/07/mit-researchers-use.html
    [7] P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Solja, J. D. Joannopoulos, S. G. Johnson and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314 ,2010.
    [8] http://nirperformance.com/2012/12/10/measurement-of-lipid-supplements-by-infrared-spectroscopy/
    [9] http://www.vscht.cz/anl/vibspec/NIR%20spectrometry.pdf
    [10] E. Neil Lewis et al., “Near-infrared Chemical Imaging and the PAT Initiative,” Spectroscopy 19(4) pp. 26-36, 2004.
    [11] http://www.glucostats.com.sg/home.html
    [12] http://www.infraredfocalsystems.com/plastiscan_specs.htm
    [13] http://english.ctr.at/carinthian_tech_research_english/news_presse/fotogalerie_forschungbereiche.php
    [14] http://www.spectralevolution.com/applications_plastic.html
    [15] S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B, 62, R2243, 2000.
    [16] M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett., 81, 4685, 2002.
    [17] R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten and N. A. Nicorovici, “Photonic engineering: Aphrodite's iridescence,” Nature 409, 36-37 (2001).
    [18] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486, 1987.
    [19] J. D. Joannopoulos et al., “Photonic Crystals,” Princeton University Press, 1995.
    [20] K. Sakoda, “Optic Properties of Photonic Crystals,” (Springer, 2001), Chap 7.
    [21] Arthur Beiser, “Concepts of Modern Physics,” 6e, Chap 2.
    [22] D. Brooks, “Fusing Current: When Traces Melt Without a Trace,” Printed Circuit Design, 15 (12), p. 53, 1998.
    [23] Tao Zhang, Lei Sun, Dedong Han, Yi Wang* and Ruqi Han, “Surface Uniform Wet Etching of ZnO Films and Influence of Oxygen Annealing on Etching Properties,” Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.
    [24] https://www.mems-exchange.org/catalog/P1432/
    [25] http://accuratus.com/alumox.html
    [26] http://www.kallex.com.tw/comparison.php
    [27] JaeWhan Kim, YongChun Kim, and WonJong Lee, “Reactive ion etching mechanism of plasma enhanced chemically vapor deposited aluminum oxide film in CF4/O2 plasma,” J. Appl. Phys. 78, 2045, 1995.
    [28] M. Jagadesh Kumar j, and Savvas G. Chamberlain, “Selective Reactive Ion Etching of PECVD Silicon Nitride over Amorphous Silicon in CF4/H2 and Nitrogen Containing CF4/H2 Plasma Gas Mixtures,” Solid-State Electronics Vol. 39, No. 1, pp. 33-37, 1996.
    [29] KNIZIKEVIČIUS, R., “Silicon Etching in XeF2 Environment,” Acta Physica Polonica, A., Vol. 124 Issue 1, p137, 2013.
    [30] V. Zanetti, “Temperature of Incandescent Lamps,” Am. J. Phys., 53 (6), p. 546, 1985.
    [31] D. Dellasega, G. Merlo, C. Conti, C. E. Bottani, and M. Passoni, “Nanostructured and amorphous-like tungsten films grown by pulsed laser deposition,” J. Appl. Phys. 112, 084328, 2012.
    [32] N. Radic ´a,*, A. Tonejcb, J. Ivkovc, P. Dubcˇeka, S. Bernstorffd, Z. Medunic´a, “Sputter-deposited amorphous-like tungsten,” Surface and Coatings Technology 180 –181, 66–70, 2004.
    [33] Tansel Karabacak,a) Anupama Mallikarjunan, Jitendra P. Singh, Dexian Ye, Gwo-Ching Wang, and Toh-Ming Lu, “b-phase tungsten nanorod formation by oblique-angle sputter deposition,” applied physics letters, vol.83, number 15, 2003.
    [34] M. E. Fitzpatrick, A.T. Fry, P. Holdway, F. A. Kandil, J. Shackleton and L. Suominen, “A National Measurement Good Practice Guide No.52,” p. 6, 2005.
    [35] http://www.engineeringtoolbox.com/surface-tension-d_962.html
    [36] M. Ohtsu, K. Minami, and M. Esashi, “By an Improved Drying Method,” IEEE, 1996.
    [37] Niels Tasy, Tonny Sonnenberg, Henri Jansen, Rob Legtenberg and Miko Elwenspoek, “Stiction in surface micromachining,” J. Micromech. Microeng. 6, 385–397, 1996.
    [38] A. Bensaoula, E. Grossmanand A. Ignatiev, “Etching of tungsten with XeF2: An x-ray photoelectron spectroscopy study,” J. Appl. Phys. 62(11), 4587, 1987.
    [39] Kirt R. Williams, and Richard S. Muller, “Etch Rates for Micromachining Processing,” Journal of Microelectromechanical systems, Vol. 5, No. 4, 1996.
    [40] Nim H. Tea, Veljko Milanovi´c, Christian A. Zincke, John S. Suehle, Michael Gaitan, Mona E. Zaghloul, and Jon Geist, “Hybrid Postprocessing Etchingfor CMOS-Compatible MEMS,” Journal of Microelectromechanical systems, 6, 4, 1997.
    [41] Leonel R Arana, Nuria de Mas, Raymond Schmidt, Aleksander J Franz, Martin A Schmidt and Klavs F Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng., 17, 384–392, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE