簡易檢索 / 詳目顯示

研究生: 楊建成
Yang, Chien-Cheng
論文名稱: 氣相磊晶法成長氮化鎵半導體及在發光二極體之應用
GaN Semiconductor with Applications relating to Light Emitting Diodes Grown by Vapor-Phase Epitaxy
指導教授: 吳孟奇
Wu, Meng-Chyi
紀國鐘
Chi, Gou-Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 185
中文關鍵詞: 氫化物氣相磊晶有機氣相磊晶氮化鎵閃鋅礦結構纖鋅礦結構有多緩衝層發光二極體
外文關鍵詞: HVPE, MOCVD, GaN, Zinc-blende, wurtzite, MBL(multiple-pair buffer layer), LED(Light Emitting Diodes)
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文,將使用氫化物氣相磊晶(HVPE)和有機氣相磊晶(MOCVD)兩種磊晶成長技術,作為閃鋅礦(Zinc-blende)結構和纖鋅礦(wurtzite)結構氮化鎵(GaN)磊晶薄膜的特性探討。在閃鋅礦(Zinc-blende)結構的探討方面,主要是在2o切面(miscut)的(001)GaAs基板上先成長一層低溫的氮化鎵(GaN),再成長立方晶格的GaN磊晶薄膜。實驗結果發現結晶凝聚長度(crystalline coherence length)是30nm以及X-光束搖擺曲線(X-ray rocking curve)的半高寬(FWHM)是4.8o。這結果同時也由螢光激發光譜(photoluminescen)所確認,由螢光激發量測出受激發峰的強度是在388nm以及一個黃色螢光激發峰約在500nm。此外,在纖鋅礦(wurtzite)結構的研究是針對在使用不同類型的反應器來探討磊晶成長機制以及開發新的緩衝結構來減低GaN磊晶薄膜的缺陷密度(defect density)。最後,我們也成功的獲得高效率的發光元件,此高效率的發光元件是由同質接面的發光二極體(homo-junction LEDs)成長在含有多緩衝層(multiple-pair buffer layer)的藍寶石(sapphire)基板上。
    在纖鋅礦(wurtzite)結構的磊晶成長,反應器的型式將是一個關鍵技術。實驗中我們發現,具備分流設計的水平式反應器比傳統的水平式的反應器能夠獲得更好的GaN磊晶薄膜品質。此外,我們也設計三種不同類型的蓋板以改變晶片支撐器(susceptor)和蓋板之間的氣體流動間距,同時也比較這三種不同的流動間距對不同H2流速的影響。這個不同的間距將影響反應物氣體的流動模式,更影響了GaN磊晶薄膜的品質。我們也發現只有在H2流量為5000 cm3/min以及在流動間距為10mm和18mm的條件下才能獲得鏡面的GaN磊晶薄膜。

    除此以外,新的成長技術也更進一步的發展以減少GaN磊晶薄膜的缺陷(defect)和差排(dislocation)。因此產生了一些新的緩衝層成長方法來提升GaN磊晶薄膜的品質。其中的一個緩衝層結構是,在藍寶石基板上先成長一層6μm的GaN磊晶層、再成長一低溫的GaN成核層、最後再成長一層4μm的GaN磊晶層。這個緩衝層結構在成長不同成核層厚度時有較廣寬的成長區間;另一個緩衝層結構是,在低溫(525℃)成長300A厚的GaN成核層以及在高溫(1000℃)成長1~4μm厚的GaN磊晶層所組成。獲得最好品質的條件是成長四對4μm厚的GaN緩衝層。

    在元件的製作方面,主要是顯示同質接面的發光二極體(homo-junction LEDs)成長在含有多緩衝層(multiple-pair buffer layer)的藍寶石(sapphire)基板上。具有三對緩衝層的發光二極體比傳統同質接面的發光二極體表現出較低的驅動電壓、更強的電激光(EL)強度和更高的光輸出功率,這主要是由於產生更多有效的電子與電洞再結合所導致。在電流-電壓(I-V)及光-電流(L-I)特性的低偏壓區域也一致的出現擴散復合電流的行為。我們將推論這個行為是由於磊晶薄膜中差排密度和雜質透過差排進入載子接合面的減少而使得含有三對緩衝層的發光二極體的光輸出功率更能提升。因此,在發光元件架構中加入多緩衝層(MBL)的結構將會是提高發光二極體的光效率及雷射二極體壽命的有效方法。


    This dissertation uses two kinds of growth technology including hydride vapor phase epitaxy (HVPE) and metalorganic chemical vapor deposition (MOCVD) to investigate the zinc-blende and wurtzite GaN epitaxial films, respectively. To study zinc-blende, cubic epitaxial films are grown on a 2°miscut GaAs(001) substrate with a low temperature GaN buffer layer before growing the epitaxial film. Experimental results indicate that the crystalline coherence length is 30nm and the rocking curve width is 4.8°. Photoluminescence measurements confirm that a cubic GaN edge emission peak appears at 388nm, as well as a strong yellow emission in the 500nm region. Additionally, the study of wurtzite structure focuses on the investigation of growth mechanism with different reactor types and the novel buffer structure to reduce the defects of GaN epitaxial films. Finally, high-performance homo-junction light emitting diodes (LEDs) were successfully grown on the low-defect substrate consisting of multiple-pair buffer layer.
    Reactor type is a crucial point in the growth of wurtzite GaN epitaxial films. According to our results, the separate-flow MOCVD horizontal reactor exhibits a better GaN-film quality than the conventional horizontal reactor. Additionally, three types of ceiling were designed to change the gas flow spacing between the susceptor and ceiling, and the three types of flow spacing are compared on different velocities of the upper stream H2 (FH2, up). This spacing affects the reactant gas flow pattern near the substrate surface and thus influences the quality of the epitaxial layers. It is also found that a mirror-like surface can only be grown for both 10 and 18mm spacing designs, and only if the H2 flow rate is adjusted to around 5000cc/min.

    Furthermore, new growth techniques are developed to further reduce the defects and dislocations embedded in the grown GaN epitaxial films. Some novel approaches are available for the GaN buffer layer to improve the quality of GaN epitaxial layer. One structure consists of a GaN nucleation layer / 6μm GaN-bulk layer on the sapphire substrate. This buffer structure has a wide growth window for different nucleation-layer thicknesses. Another structure is multiple-pair buffer layer (MBL), which consists of a 300A thick GaN nucleation layer grown at a low temperature of 525℃ and a 1-4μm thick GaN epitaxial layer grown at a high temperature of 1000℃. The condition optimizing the quality of GaN epitaxial layers is to grow the four-pair buffer layer with a pair thickness of 4μm on the sapphire substrate.

    In the device fabrication the homo-junction blue LEDs with MBL on sapphire substrates were demonstrated. The LEDs with three-pair buffer layer exhibit a lower turn-on voltage, a stronger EL intensity, and a higher light output due to more radiative recombinations occurring in the junction. A consistent behavior also appears in both the I-V and L-I, in which the diffusion recombination current can be observed in the low-bias regime. It is inferred that the reduction of dislocations in the epitaxial layers will result in the reduction of impurity diffusion into the junction via these dislocations. Therefore, the light output power of the LED with three-pair buffer layer will be improved by reducing impurities. The growth of MBL in the LED structure is a feasible means to fabricate high-performance LEDs and laser devices.

    Chapter 1 Introduction 1.1 The Research History of GaN-based Devices 1.2 The Key Technology of GaN-based Emitters 1.2.1 Hardware modify 1.2.2 Substrate Selection 1.2.3 Quality Improvement of Epitaxial Films 1.2.4 Novel Structure of Low Defect Substrate for LDs 1.3 Outline of This Dissertation Chapter 2 HVPE and MOCVD Epitaxial Techniques 2.1 Introduction of Epitaxial Techniques 2.2 Hydride Vapor Phase Epitaxy (HVPE) 2.2.1 Reaction Mechanism of GaN in HVPE System 2.2.2 HVPE Reactor 2.3 Metalorganic Chemical Vapor Deposition (MOCVD) 2.3.1 Reaction Mechanism of GaN in MOCVD System 2.3.2 MOCVD Reactor Chapter 3 Epitaxial Growth of Zinc-Blende GaN Using the Hydride Vapor Phase Epitaxy Method 3.1 Introduction 3.2 Growth of zinc-blend GaN on 2° miscut GaAs (100) substrate 3.2.1 Characterization of crystalline using the high-resolution x-ray 3.2.2 Characterization of photoluminescence spectroscopy and Hall effect Chapter 4 Epitaxial Growth of Wurtzite GaN Using the Atomsphere Pressure Metalorganic Chemical Vapor Deposition Method 4.1 Introduction 4.2 Growth and characterization of GaN with a novel separate-flow 4.2.1 Study of surface morphology 4.2.2 Study of crystalline, electrical and optical property 4.3 Growth and characterization of GaN epitaxial layer quality by the design of reactor chamber spacing 4.3.1 Study of surface morphology 4.3.2 Study of crystalline, electrical and optical property 4.4 Growth of GaN epitaxial film at the different ratio of H2/NH3 4.4.1 Study of photoluminescence spectroscope 4.4.2 Study of crystalline property 4.4.3 Study of electrical property Chapter 5 Epitaxial Growth of Novel GaN Epitaxial Structure 5.1 Introduction 5.2 Growth and characterization of GaN layer with the bulk-GaN buffer structure 5.2.1 Study of crystalline property and photoluminescence spectroscope 5.2.2 Study of Hall effect with different temperature 5.3 Growth and characterization of GaN multiple-pair buffer layer structure 5.3.1 Study of change the pair number of buffer layer while fixing the pair thickness to 4μm 5.3.2 Study of change in the pair number of buffer layer while fixing the total thickness of the buffer layer to 4μm 5.3.3 Study of change in the pair thickness in the 4-pair buffer layer 5.3.4 Microstructural evolution in the multiple composite layer of GaN on Chapter 6 GaN Light-Emitting Diodes with Multiple Buffer Layer 6.1 Introduction 6.2 Activation of p-type GaN using thermal treatment in the N2 ambient 6.2.1 Study of electrical and optical properties 6.3 Growth and characterization of GaN multiple-pair buffer layer structure 6.3.1 Study of electrical and optical properties Chapter 7 Conclusions References Publication List (Chien-Cheng, Yang)

    1. A. Mills, “Nitride Metamorphosis - the Boston MRS Meeting & More”, III-Vs Review 9, 44 (1996).
    2. M. Meyer, “High Temperature Semiconductors: Evolution, not Revolution”, Compound Semiconductor July/August, 6 (1996).
    3. K. Koga, T. Yamaguchi, “ ”, Crystal Growth and Charact. 23, 127 (1991).
    4. J. Edmond, H. Kong, and V. Dmitrieve, “ “ Inst. Phys. Conf. Ser. 137, 515 (1994)
    5. T. Whitaker and M. Meyer, “Things to watch in 1998”, Compound Semiconductor Winter, 24 (1998).
    6. W. C. Johnson, J. B. Parsons, and M. C. Crew, J. Phys. Chem. 36, 2561 (1932).
    7. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN electroluminescent diodes”, RCA Rev. 32, 283 (1971).
    8. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phy. Lett. 48, 353 (1986).
    9. H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, Y. Ishii “Electron beam effects on blue luminescence of Zinc-doped GaN” Journal of Luminescence, 40?, 121 (1988).
    10. S. Nakamura, T. Mukai, and M. Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes” Jpn. J. Appl. Phys. 30, L1998 (1991).
    11. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64, 1687 (1994).
    12. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, Jpn. J. Appl. Phys. 36, L1568 (1997).
    13. A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamagucki, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy”, Jpn. J. Appl. Phys. 36, L899 (1997).
    14. H. Amano, N. Sawaki and I. Akasaki, “EFFECTS OF HYDROGEN IN AN AMBIENT ON THE CRYSTAL GROWTH OF GaN USING Ga(CH3) 3 AND NH3”, J. Cryst. Growth 68, 163 (1984).
    15. S. Nakamura, Y. Harada and M. Senoh, “Novel metalorganic chemical vapor deposition system for GaN growth”, Appl. Phys. Lett. 58, 2021 (1991).
    16. K. Nishida, S.Haneda, K. Hara, H. Munekata and H. Kukimoto, “MOVPE of GaN using a specially designed two-flow horizontal reactor”, J. Cryst. Growth 170, 312 (1997).
    17. C. C. Yang, G. C. Chi, C. K. Huang and M. C. Wu, “Growth and characterization of GaN by atomsphere pressure metalorganic chemical vapor deposition with a novel separate-flow reactor”, J. Cryst. Growth 200, 34 (1999).
    18. I. Akasaki, H. Amano, Y. Koide, K. Hiranatus, and N. Sawaki, “EFFECTS OF AlN BUFFER LAYER ON CRYSTALLOGRAPHIC STRUCTURE AND ON ELECTRICAL AND OPTICAL PROPERTIES OF GaN AND Ga1-XAlXN (0<x<0.4) FILMS GROWN ON SAPPHIRE SUBSTRATE BY MOVPE”, J. Cryst. Growth 98, 209 (1989).
    19. H. Amano, K. Hiranatus, and I. Akasaki, “Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (11-20) and (0001) Sapphire Substrates”, Jpn. J. Appl. Phys. 27, L1384 (1988).
    20. K. Doverspike, L.B. Rowland, D.K. Gaskill, and J.A. Freitas, “The Effect of GaN and AlN Buffer Layers on GaN Film Properties Grown on Both C-Plane and A-Plane Sapphire”, J. Electron. Mater. 24, 269 (1995).
    21. C.J. Sun and M. Razeghi, “Comparison of the physical properties of GaN thin films deposited on (0001) and (0112) sapphire substrates”, Appl. Phys. Lett. 63, 973 (1993).
    22. T. George, E. Jacobsohn, W. T. Pike, and P. Chang-Chien, “Novel symmetry in the growth of gallium nitride on magnesium aluminate substrates”, Appl. Phys. Lett. 68, 337 (1996).
    23. C. J. Sun, J. W. Yang, Q. Chen, M. A. Khan, T. George, P. Chang-Chien, and S. Mahajan, “Deposition of high quality wurtzite GaN films over cubic (111) MgAl2O4 substrates using low pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. 68, 1129 (1996).
    24. C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D. K. Gaskill, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01-12) Al2O3 and (0001)Si 6H-SiC substrates”, J. Appl. Phys. 76, 236 (1994).
    25. C. H. Hong, K. Wand, and D. Pavlids, “Epitaxial Growth of Cubic GaN on (111) GaAs by Metaloganic Chemical Vapor Deposition”, J. Electron. Mater. 24, 213 (1995).
    26. N. Kuwano, K. Kobayashi, K. Oki, S. Miyoshi, H. Yaguchi, K. Onabe, and Y. Shiraji, “Formation of Cubic GaN on (111)B GaAs by Metal - Orgaic Vapor-Phase Epitaxy eith dimethylhydrazine”, J. Appl. Phys. 33, 3415 (1994).
    27. Y. Morimoto, K. Uchiho, anf S. Ushio, “Vapor Phase Epitaxy Growth of GaN on GaAs, GaP, Si, and Sapphire Substrates from GaBr3 and NH3”, J.Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 120, 1783 (1973).
    28. J. G. Kim, A. C. Frenkel, H. Liu, and R. M. Park, “Growth by molecular beam epitaxy and electrical characterization of Si-doped zinc blende GaN films deposited on B-SiC coated (001) Si substrates”, Appl. Phys. Lett. 65, 91 (1994).
    29. T. Lei, M. Fanciuli, R. J. Molnar, and T. D. Moustakas, “Epitaxial growth of zinc blend and wurtzite gallium-nitride thin films on (001) silicon”, Appl. Phys. Lett. 59, 944 (1991).
    30. Y. Tazoh, T. Ishii, S. Miyazawa, “GaN Thin Film Growth on LiGaO2 Substrate with a Multi-Domain Structure”, Jpn. J. Appl. Phys. 36, L746 (1997).
    31. T. Ishii, Y. Tazoh, S. Miyazawa, “LiGaO2 Single Crystals for a Substrate of Hexagonal GaN Thin Films”, Jpn. J. Appl. Phys. 36, L139 (1997).
    32. S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys. 30, L1705 (1991).
    33. K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, and K. Oki, “Growth mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE”, J. Cryst. Growth, 115, 628 (1991).
    34. H. Amano, M. Kitho, K. Hiranatus, and I. Akasaki, “UV and blue electroluminescence from AlGaN:Mg/GaN LED treated with low-energy electron beam irradiation (LEEBI)”, Gallium Arsenide and related compounds, 725(1989).
    35. S. Nakamura and G. Fasol, “The Blue Laser Diode”, p.103 (Tokyo, Springer, 1997).
    36. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-type Mg-doped GaN Films”, Jpn. J. Appl. Phys. 31, L139 (1992).
    37. H. Sato, T. Sugahara, M. Hao, Y. Naoi, S. Kurai, K. Yamashita, S. Tattori, K. Nishino, and S. Saki, “ Homo-epitaxial Growth of GaN by MOCVD on a bulk GaN Prepared by the Sublimation Method”, 2nd International Conference on Nitride Semiconductors (1997), p.152, Tokushima, Japan.
    38. M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Gorgens, O. Ambacher, and M. Stutzmann, “Large Free-standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff”, Jpn. J. Appl. Phys. 38, L217 (1999).
    39. C. C. Yang, M. C. Wu, C. A. Chang, and G. C. Chi, “Effectiveness of multiple-pair buffer layer to improve the GaN layers grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 85, 8427 (1999).
    40. M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN”, Jpn. J. Appl. Phys. 37, L316 (1998).
    41. M. Kamp, International Photonics Conference (1998), p.693, Taipei, Taiwan.
    42. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett. 72, 2014 (1998).
    43. H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrate”, Appl. Phys. Lett. 12, 156 (1968).
    44. H. M. Manasevit, W. I. Simpson, “The use of metal-organics in the preparation of semiconductor materials I. Epitaxial gallium-V compounds”, J. Electrochem. Soc. 116, 1725 (1969).
    45. G. B. Stringfellow, Reports on Progress in Physics 45, 469 (1982).
    46. G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy : Theory and Practice”, p.3 (Academic Press, San Diego, 1989).
    47. H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapour-deposited single- crystal-line GaN”, Appl. Phys. Lett. 15, 327 (1969).
    48. B. W. Wessels, “Vapor Deposition of GaP for High-Efficiency Yellow Solid-State Lamps”, J.Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 122, 402 (1975).
    49. D. J. Kirwan, “Reaction Equilibrium in the Growth of GaAs and GaP by the Chloride Transport Process”, J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 117, 1572 (1970).
    50. T. Y. Wu, “Vapor Phase Epitaxy and Thermodynamic Calaulations of GaAsP”, J.Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 121, 1357 (1974).
    51. K. Naniwae, S. Itoh, H. Amano, K. Itoh, K. Hiramatsu, and I. Akasaki, “GROWTH OF SINGLE CRYSTAL GaN SUBSTRATE USING HYDRIDE VAPOR PHASE EPITAXY”, J. Cryst. Growth 99, 6381 (1990).
    52. V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth II. GaN”, J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY 119, 761 (1972).
    53. A. Koukitu, S. Hama, T. Taki, and H. Seki, “ Thermodynamic Analysis of Hydride Vapor Phase Epitaxy of GaN”, Jpn. J. Appl. Phys. 37, 762 (1998).
    54. D. Elwell and M. M. Elwell, “CRYSTAL GROWTH OF GALLIUM NITRIDE”, Crystal Growth and Charact. 17, 53 (1988).
    55. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium”, J. Electrochem. Soc. 118, 1864 (1971).
    56. T. Sasaki and T. Matsuoka, “Analysis of two-step-grown conditions for GaN on an AlN buffer layer”, J. Appl. Phys. 77, 192 (1995).
    57. T. Sasaki, “Surface morphology of MOVPE-grown GaN on (0001) sapphire”, J. Cryst. Growth 129, 81 (1993).
    58. A. Thon and T. F. Kuech, “High temperature adduct formation of trimethylgallium and ammonia”, Appl. Phys. Lett. 69, 55 (1996).
    59. G. E. Coates, J. Chem. Soc. Part III, 2003 (1951).
    60. Zaouk, E. Salvetat, J. Sakaya, F. Maury, and G. Constant, “ ” J. Cryst. Growth 55, 135 (1981).
    61. C. Yeh, Z. W. Lu, S. Froyen and A. Zunger, Phys. Rev. B46 (1992) 10086.
    62. J. I. Pankove, Mater. Res. Soc. Symp. Proc. 162 52 (1990).
    63. W. Seifert and A. Tempel, “Cubic phase gallium nitride by chemical vapour deposition”, Phys. Status Solidi A23, K39 (1974).
    64. M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, “'Low Temperature Growth of GaN and AlN on GaAs Utilizing Metalogranics and Hydrazine”, Jpn. J. Appl.Phys. 25, L945 (1986).
    65. W. Seifert, G. Fitzl and E. Butter, “STUDY ON THE GROWTH RATE IN VPE OF GaN”, J. Cryst. Growth 52, 257 (1981).
    66. T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki, “Relaxation Process of the Thermal Strain in the GaN/α-Al2O3 Heterstructurenand Determination of the Intrinsic Lattice Constants of GaN Free from the Strain”, Jpn. J. Appl. Phys. 31, L1454 (1992).
    67. H, Tsuchiya, F. Hasegawa, H. Okumura and S. Yoshida, “Comparison of hydride vapor phase epitaxy of GaN layers on cubic GaN/(100)GaAs and hexagonal GaN/(111)GaAs substrates”, Jpn. J. Appl. Phys. 33, 6448 (1994).
    68. H, Tsuchiya, K. Sunaba, S. Yonemura, T. Suemasu and F. Hasegawa, “Cubic Dominant GaN Growth on (001) GaAs Substrates by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 36, L1 (1997).
    69. M. Shono, S. Honda, T. Ikegami, Y. Bessyo, R. Hiroyama, H. Kase, K. Yodoshi, T. Yamaguchi and T. Niina, “High-power operation of 630 nm-band tensile strained multiquantum-well AlGaInP laser diodes with a multiquantum barrier”, Electronics Letters 29, 1010 (1993).
    70. A. A. Yamaguchi, T. Manako, A. Sakai, H. Sunakawa, A. Kimura, M. Nido and A. Usui, “Single Domain Hexagonal GaN Films on GaAs(100) Vicinal Substrates Grown by Hydride Vapor Epitaxy”, Jpn. J. Appl. Phys. 35, L873 (1996).
    71. Y. Miura, N. Takahashi, A. Koukitu and H. Seki, “Investigation of Bufffer layer of Cubic GaN Epitaxial Films on (100) GaAs Grown by Metalorganic-Hydrogen Chloride Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys. 35, 546 (1996).
    72. R. Lappa, G. Glowacki and S. Galkowski, “Growth of GaN thin films from active nitrogen and GaCl”, Thin Solid Films 78, 73 (1976).
    73. H. Tsuchiya, T. Okahisa, F. Hasegawa, H. Okumura and S. Yoshida, “Homoepitaxial Growth of Cubic GaN by Hydride Vapor Phase Epitaxy on Cubic GaN/GaAs Substrate Prepared with Gas Source Molecular Beam Epitaxy”, Jpn. J. Appl. Phys. 33, 1747 (1994).
    74. F. A. Ponce, D. P. Bour, W. Goto, and P. L. Wright, “Spatial distribution of the luminescence in GaN thin films”, Appl. Phys. Lett. 68, 57 (1996).
    75. C. H .Lee, G. C. Chi, C. F. Lin, M. S. Feng and J. D. Guo, “X-ray crystallographic study of GaN epitaxial films on Al2O3 (0001) substrates with GaN buffer layers”, Appl. Phys. Lett. 68, 3440 (1996).
    76. J. H. Edgar, “Properties of Group III Nitrides”, (London, New York, 1994), pp. 147.
    77. R. Niebuhr, K. Bachem, K. Dombrowski, M. Maier, W. Pletschen and U. Kaufmann “Bisic Studies of Gallium Nitride Growth on Sapphire by Metalorganic Chemical Vapor Deposition and Optical Properties of Deposited Layers”, J. Electron. Mater. 24, 1531 (1995).
    78. S. Nakamura, T. Mukai and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-lightemitting diodes”, J. Appl. Phys. 76, 8189 (1994).
    79. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”, Jap. J. Appl. Phys. 34, L797 (1995).
    80. J. I. Pankove, “Properties of gallium nitride”, Mater. Res. Soc. Symp. Proc. 97, 409 (1987).
    81. M. A. Khan, D. J. Olson, and J. N. Kuznia, “High quality AlxGa1-xN grown by metalorganic chemical vapor deposition using trimethylamine alane as the aluminum precursor”, Appl. Phys. Lett. 65, 64 (1994).
    82. S. Nakamura, M. Senoh, and T. Mukai, “p-GaN/n-InGaN/n-GaN double heterostructure blue-light-emitting diodes”, Jpn. J. Appl. Phys. 32, L8 (1993).
    83. M. Asif Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm and M.S. Shur, “Microwave performance of a 0.25 um gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. 65, 1121 (1994).
    84. J.C. Zolper, R.J. Shul, A.G. Baca, R.G. Wilson, S.J. Pearton and R.A. Stall, “Ion-implanted GaN junction field effect transistor”, Appl. Phys. Lett. 68, 2273 (1996).
    85. O. Briot, J.P. Aiexis, M. Tchounkeu, and R.L. Aulombard, “Optimization of the MOVPE growth of GaN on sapphire”, Mater. Sci. E. B43, 147 (1997).
    86. S.D. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy, M. Banas and M. Goorsky, “The Role of the Low Temperature Buffer Layer and Layer Thickness in the Optimization of OMVPE Growth of GaN on Sapphire”, J. Elec. Mat. 24, 1519 (1995).
    87. W. Van der Strict, I. Moerman, P. Demeester, J.A. Crawley and E.J. Thrush, “Study of GaN and InGaN films grown by metalorganic chemical vapour deposition”, J. Cryst. Growth 170, 344 (1997).
    88. R. Singh, R. J. Molnar, M. S. Unlu, and T. D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films”, Appl. Phys. Lett. 64, 336 (1994).
    89. T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN”, Jpn. J. Appl. Phys. 19, 2395 (1980).
    90. J. Baur, K. Maier, M. Knuzer, U. Kaufmann, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm, and K. Hiramatsu, “Infrared luminescence of residual iron deep level acceptors in gallium nitride (GaN) epitaxial layers”, Appl. Phys. Lett. 64, 857 (1994).
    91. W. Gotz, N. M. Johnson, H. Amano, and I. Akasaki, “Deep level defects in n-type GaN”, Appl. Phys. Lett. 65, 463 (1994).
    92. W. E. Carlos, “Electron-spin-resonance studies of donors in wurtzite GaN”, Phys. Rev. B 48, 17878 (1993).
    93. M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, “p-type gallium nitride by reactive ion-beam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg”, Appl. Phys. Lett. 64, 64 (1994).
    94. E. Silkowski, G. S. Pomrenke, Y. K. Yeo, and R. L. Hengehold, “Optical activation of ion implanted and annealed GaN”, Phys. Scr. T69, 276 (1997).
    95. W. Gotz, N. M. Johnson, R. A. Street, H. Amano, and I. Akasaki, “Deep level defects in GaN characterized by capacitance transient spectroscopies”, Defect and Impurity Engineered Semiconductors and Devices. Symposium. Mater. Res. Soc., Pittsburgh, PA, USA, 491 (1995).
    96. T. A. Kennedy, E. R. Glaser, J. A. Freitas, Jr., W. E. Carlas, M. A. Khan, and D. K. Wickenden, J. Electron. Mater. 24, 219 (1995).
    97. C. C. Yang, C. H. Lee, G. C. Chi, M. C. Wu, “X-ray diffraction characterization of epitaxial zinc-blende GaN films on a miscut GaAs (001) substrates using the hydride vapor phase epitaxy method”, J. Cryst. Growth 206, 8 (1999).
    98. T. Sasaki, “Surface morphology of MOVPE-grown GaN on (0001) sapphire”, J. Cryst. Growth 129, 81 (1997).
    99. B.P. Keller, S. Keller, D. Kapolnek, M. Kato, H. Masui, S. Imagi, U.K. Mishra and S.P. Denbaars, “Effect of atmospheric pressure MOCVD growth conditions on UV band-edge photoluminescence in GaN thin films”, Electron. Lett. 31 1102 (1995).
    100. J.N. Kuznia, M. Asif Khan and D.T. Olson, “Influence of buffer layers on the deposition of high quality single crystal over sapphire substrates”, J. Appl. Phys. 73 4700 (1993).
    101. C. Wetzel, S. Fischer, J. Kruger, and E.E. Haller, “Strongly localized excitons in gallium nitride”, Appl. Phys. Lett. 68, 2556 (1996).
    102. M. Sakamoto, D.F. Welch, G.L. Harnagel, W. Steifer, H. Kung and D.R. Scifers, “Ultrahigh power 38 W continuous-wave monolithic laser diode arrays”, Appl. Phys. Lett. 52, 2220 (1988).
    103. H. Schlichting, “Boundary Layer Theory”, (McGraw-Hill, New York, 1968).
    104. B.G. Secrest, W.W. Boyd, and D.W. Shaw, “Application of the finite element method to mass transport limited epitaxial growth processes”, J. Cryst. Growth, 10 251 (1971).
    105. J.B. Mullin, Prog. Crystal Growth and Charact., 24, 111 (1992).
    106. B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnet, B.P. Keller, S.P. DenBaars, and J.S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. 68, 643 (1996).
    107. R. Dingle, D.D. Sell, S.E. Stokowski, and M. Ilegems, “Absorption, reflectance and luminescence of GaN epitaxial layers”, Physical Review B 4, 1211 (1971).
    108. J. I. Pankove and S. Bloom, “Optical properties of GaN”, RCA Rev. 36, 163 (1975).
    109. R. Dai, S. Fu, J. Xie, G. Fan, G. Hu, H. Schrey, and C. Klingshirn, “Photoluminescence of GaN epitaxial layers”, J. Phys. C 15, 393 (1982).
    110. C. C. Yang, G. C. Chi, C. K. Huang, and M. C. Wu, “Growth and characterization of GaN by atomsphere pressure metalorganic chemical vapor deposition with a novel separate-flow reactor”, J. Cryst. Growth 200, 32 (1999).
    111. S. D. Hersee, J. Ramer, K. Zheng, C. Kranenberg , K. Malloy, M. Banas, and M. Goorsky, “The Role of the Low Temperature Buffer Layer and Layer Thickness in the Optimization of OMVPE Growth of GaN on Sapphire”, J. Electron. Mater. 24, 159 (1995).
    112. S.Y. Ren, and J.D. Dow, “Properties of VPE-grown GaN doped with Al and some iron-group metals”, Appl. Phys. Lett. 69, 251 (1996).
    113. A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, “High-quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O3 substrate”, Appl. Phys. Lett. 67, 2521 (1995).
    114. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices”, Jpn. J. Appl. Phys., Part 2 36, L1568 (1997).
    115. T. Detchprohm, K. Hiramatsu, N. Sawaki, and I. Akasaki, “Metalorganic vapor phase epitaxy growth and characteristics of Mg-doped GaN using GaN substrates”, J. Cryst. Growth 145, 192 (1994).
    116. R. P. Vaudo, V. M. Phanse, X. H. Wu, Y. Golan, and J. S. Speck, 2nd International Conference on Nitride Semiconductors (1997). Tokushima, Japan.
    117. H. Marchand, X. H. Wu, J. P. Ibbeston, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 73, 747 (1998).
    118. K. Hiramatsu, T. Detchprohm, and I. Akasaki, “Relaxation mechanism of thermal stresses in the heterostructure of GaN grown on sapphire by vapor phase epitaxy”, Jpn. J. Appl. Phys. 32, 1528 (1993).
    119. N. Takahashi, S. Matsuki, A. Koukitu, and H. Seki, “Growth of GaN on GaAs(111)B by metalorganic Hydrogen Chloride VPE Using Double Buffer Layer”, Jpn. J. Appl. Phys. Part 2, 36, 1133 (1997).
    120. J. T. Kobayashi, N. P. Kobayashi, and P. D. Dapkus, “INITIAL STAGES OF MOCVD GROWTH OF GALLIUM NITRIDE USING A MULTI-STEP GROWTH APPROACH”, Mat. Res. Soc. Symp. Proc. Vol. 468, 187 (1997).
    121. K. Uchida, K. Nishida, M. Kondo, and H. Munekata, “Epitaxial Growth of GaN Layers with Double-Buffer Layers”, in proceedings of the second international conference on nitride semiconductors (Tokushima, Japan, 1997), p. 214. ).
    122. C. C. Yang, G. C. Chi, C. K. Huang and M. C. Wu, “Growth and characterization of GaN by atomsphere pressure metalorganic chemical vapor deposition with a novel separate-flow reactor”, J. Cryst. Growth 200, 32 (1999).
    123. Y. Golan, X. H. Wu, and J. S. Speck, “Morphology and microstructural evolution in the early stages of hydride vapor phase epitaxy of GaN on sapphire”, Appl. Phys. Lett. 73, 3090 (1998).
    124. A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density”, J. Appl. Phys. 71, 2259 (1997).
    125. H. Amano, M. Kito, K. Hiranatus, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)”, Jpn. J. Appl. Phys. 28, L2112 (1989).
    126. M. A. Reshchikov*, G.-C. Yi, and B. W. Wessels, “DEFECT LUMINESCENCE IN HEAVILY Mg DOPED GaN”, MRS Internet Journal of Nitride Semiconductor Research, vol.4S1, art G11-8, 1999.
    127. A. Pelzmann, S. Strite, A. Dommann, C. Kirchner, Markus Kamp , K. J. Ebeling, and A. Nazzal “Improved optical activation of ion-implanted Zn acceptors in GaN by annealing under N 2 overpressure”, MRS Internet Journal of Nitride Semiconductor Research, vol.2, art 4, 1997.
    128. S. Haffouz, B. Beaumont, M. Leroux, M. Laugt, P. Lorenzini, Pierre Gibart, and L.G.Hubert-Pfalzgraf, “p-doping of GaN by MOVPE”, MRS Internet Journal of Nitride Semiconductor Research, vol.2, art 37, 1997.
    129. F. J. Sanchez, F. Calle, D. Basak, J. M. G. Tijero, M. A. Sanchez-Garcia, E. Monroy, E. Calleja, E. Munoz, B. Beaumont, Pierre Gibart, J.J. Serrano, and J.M. Blanco, “Yellow luminescence in Mg-doped GaN”, MRS Internet Journal of Nitride Semiconductor Research, vol.2, art 28, 1997.
    130. S. D. Lester, F. A. Ponce, M. G. Craford and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett., 66, 1249 (1995).
    131. X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang and M. A. Khan, “Growth defects in GaN films on sapphire: the probable origin of threading dislocations”, J. Mater. Res., 11, 580 (1996).
    132. T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T.Romano and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN”, Jpn. J. Appl. Phys., 37, L398 (1998).
    133. L. Eastman, K. Chu, W. Schaff, M. Murphy and N. G. Weimann, “High frequency AlGaN/GaN MODFETs”, Internet J. of Nitride Semiconductor Re, 2, 17 (1997).
    134. T. Sugahara, H. Asto, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamasita, K. Nishino, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN”, Jpn. J. Appl. Phys. 37, L398 (1998).
    135. R. P. Vaudo, V. M. Phanse, X. H. Wu, Y. Golan, and J. S. Speck, 2nd International Conference on Nitride Semiconductors (1997), p.156, Tokushima, Japan.
    136. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., 72, 211 (1998).
    137. I. Martil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on Ill-V nitrides”, J. Appl. Phys. 81, 2442 (1997).
    138. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys. 31, 1258 (1992).
    139. J. M. Myoung, K. H. Shim, C. Kim, O. Gluschenkov, K. Kim, S. Kim, D. A. Turnbull, and S. G. Bishop, “Optical characteristics of p-type GaN films grown by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett. 69, 2722 (1996).
    140. S. Strite and H. Morkoc, “ GaN, AlN aand InN: A review”, J. Vac. Sci-Technol. B10, 1237(1992).
    141. C. H. Hong, D. Pavidis, and S. W. Brown, “Photoluminescence investigation of GaN films grown by metalorganic chemical-vapor-deposition on (100) GaAs”, J. Appl. Phys. 74, 1705 (1995).
    142. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A. Botchkarev, H. Morkoc, and B. Goldenberg, “Mechanisms of band-edge emission in Mg-doped p-type GaN”, Appl. Phys. Lett. 68, 1883 (1996).
    143. Fedison JB, Chow TP, Lu H, Bhat IB, “Electrical characteristics of magnesium-doped gallium nitride junction diodes”, Appl. Phys. Lett. 72, 2841 (1998).
    144. H. C. Casey Jr., J. Muth, S. Krishnankutty, J.M. Zavada, “Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes”, Appl. Phys. Lett. 68, 2867 (1996).
    145. T. Sugahara, H. Asto, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamasita, K. Nishino, S. Sakai, in the 2nd International Conference on Nitride Semiconductors, 1997, p.436, Tokushima, Japan.
    146. S. Nakamura, M. Senoh, T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers”, Jpn. J. Appl. Phys. 30, L1708 (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE