簡易檢索 / 詳目顯示

研究生: 張善恆
Cheong, Xin-Han
論文名稱: 利用微流體快速診斷晶片 應用於新生兒高膽紅素血症之檢測
Detection of neonatal hyperbilirubinemia using microfluidics-based rapid diagnosis chip
指導教授: 黃振煌
Huang, Jen-Huang
口試委員: 森川響二郎
Kyojiro, Morikawa
黃宇辰
Huang, Yu-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 微流體技術新生兒高膽紅素血症定點照護即時檢測晶片血漿分離
外文關鍵詞: microfluidic technology, neonatal hyperbilirubinemia, point-of-care testing, real-time diagnosis chip, plasma separation
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高膽紅素血症,又稱黃疸病,是一種新生兒常見的症狀之一,通常在出生後的幾天內出現。這是由於膽紅素在血液中累積所引起。如果高濃度的膽紅素長時間累積於新生兒體內,可能會造成非常嚴重的後果,例如核黃疸或神經毒性等。然而,目前膽紅素的檢測的方法非常昂貴、耗時,並且需要專業的分析設備和訓練有素的醫護人員。這對於居住在醫療資源相當缺乏的偏鄉地區的居民而言,要讓新生兒進行膽紅素的檢測非常不容易。因此,本研究旨在開發一個即時檢測、低成本且操作簡單的膽紅素檢測晶片。本晶片透過氣動式幫浦,不需要外接任何儀器或電源,即可將血漿從全血中分離出來。通過操作此幫浦,只需要少量的全血樣本 (50 μL),即可在2分鐘內快速完成診斷,從而降低成本及時間。其中,血漿的體積對於膽紅素的診斷非常重要,因為血漿樣品體積的不同可能會影響膽紅素檢測的準確性。我們採用毛細作用和幫浦所產生的負壓相結合的方式,通過血漿分離膜將血漿從全血中分離出來。同時,膽紅素濃度的檢測主要採用比色法,無需經過專業訓練,用肉眼即可判斷出膽紅素的濃度。我們期望這種即時檢測 (POCT) 概念的微流體晶片能夠納入新生兒檢測中,在家庭護理環境中可以評估新生兒高膽紅素血症。


    Hyperbilirubinemia, also known as jaundice, is a common condition in newborn babies, occurring within the first few days of birth due to the buildup of bilirubin in their blood. If the bilirubin levels remain high for an extended period, it can lead to serious consequences like neurotoxicity or kernicterus. However, the current method for diagnosing bilirubin is expensive, time-consuming, and requires specialized equipment and trained personnel. This poses challenges for individuals in rural areas who may not have immediate access to bilirubin diagnosis. Thus, this study aims to develop a real-time, low-cost, and user-friendly bilirubin diagnosis chip. This chip is capable of separating plasma from whole blood without the need for any specialized instruments or electrical power but using a double-layered nitrile membrane air pump which consists of a chamber volume, an air vent and channels connected with other chambers. We achieved a quick diagnosis time of 2 minutes using a small amount of whole blood (50 μL) by operating the air pump, reducing both cost and time. The volume of plasma is crucial for bilirubin diagnosis because different volumes can impact the accuracy of bilirubin testing. The plasma is achieved through a combination of capillary force and negative pressure, using a plasma separation membrane. The bilirubin concentration is determined using a colorimetric method, allowing for diagnosis with the naked eye and eliminating the need for professional guidance. We anticipate that this microfluidic diagnosis chip will enable the concept of point-of-care testing (POCT) to be applied in newborn care, allowing for the evaluation of neonatal hyperbilirubinemia in a homecare setting.

    Abstract i 摘要 ii 致謝 iii Contents iv Contents of Illustrations vi Contents of Table viii Contents of Equation viii Chapter 1 Introduction and Literature Review 1 1.1 Hyperbilirubinemia 1 1.1.1 Formation of Bilirubin 1 1.1.2 Metabolism of Bilirubin 2 1.1.3 Hyperbilirubinemia Syndromes 4 1.1.4 Neonatal Hyperbilirubinemia 6 1.2 Determination of Bilirubin Concentration 7 1.2.1 Conventional Methods 7 1.2.2 Advance Methods 9 1.2.3 Non-Invasive Method 11 1.2.4 Point-Of-Care Testing Method 13 1.3 Motivation and Purposes 14 1.4 Current Limitations 15 Chapter 2 Materials and Methods 17 2.1 Materials 17 2.1.1 Polymers in Device Fabrication 17 2.1.2 Plasma Separation Membrane 18 2.1.3 Nitrile Rubber 18 2.1.4 Chemicals 18 2.2 Methods 19 2.2.1 Preparation of Standard Blood Bilirubin Solution 19 2.2.2 Preparation of Total Bilirubin Assay Kit 21 2.2.3 Surface Modification of Polymers 22 2.2.4 Fabrication of Bilirubin Diagnosis Chip 23 2.3 Experiment Analysis 25 2.3.1 Pressure Analysis 25 2.3.2 Optical Inspection 25 2.3.3 Image Analysis 26 2.3.4 Characterization Analysis 27 2.3.5 Statistical Analysis 27 Chapter 3 Result and Discussion 28 3.1 Design Concept of the Bilirubin Diagnosis Chip 28 3.2 Operation Process of the Diagnosis Chip 30 3.3 Characteristics of the Air Pump 33 3.3.1 Pressure Profile of Different Operating Conditions 33 3.3.2 Flow Rate of Air Pump 34 3.4 Bilirubin Diagnosis Chip 36 3.4.1 Sample Collection Design 36 3.4.1.1 Collection Method 39 3.4.1.2 Accuracy of Plasma Volume 41 3.4.2 Depth of the Display Chamber 54 Chapter 4 Conclusion and Future Work 57 4.1 Conclusion 57 4.2 Future Work 58 4.2.1 Accuracy of the Plasma Collected 58 4.2.2 Color Chart for Bilirubin Determination 59 4.2.3 Validation of the Diagnosis Chip for Infant’s Blood Samples 60 References 61

    1. Berk, P.D., et al., Studies of bilirubin kinetics in normal adults. The Journal of clinical investigation, 1969. 48(11): p. 2176-2190.
    2. Wang, X., J.R. Chowdhury, and N.R. Chowdhury, Bilirubin metabolism: applied physiology. Current Paediatrics, 2006. 16(1): p. 70-74.
    3. Puentes-Pardo, J.D., et al., Heme oxygenase-1 in gastrointestinal tract health and disease. Antioxidants, 2020. 9(12): p. 1214.
    4. Diamond, I. and R. Schmid, Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. The Journal of clinical investigation, 1966. 45(5): p. 678-689.
    5. Peters, W.H. and P.L. Jansen, Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver. Journal of hepatology, 1986. 2(2): p. 182-194.
    6. Hansen, T. and D. Bratlid, Physiology of neonatal unconjugated hyperbilirubinemia. 2012.
    7. Ngashangva, L., V. Bachu, and P. Goswami, Development of new methods for determination of bilirubin. Journal of pharmaceutical and biomedical analysis, 2019. 162: p. 272-285.
    8. Strassburg, C.P., Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Practice & Research Clinical Gastroenterology, 2010. 24(5): p. 555-571.
    9. Vodret, S., Neonatal Hyperbilirubinemia: In Vivo Characterization of Mechanisms of Bilirubin Neurotoxicity and Pharmacological Treatments. 2016, International Centre for Genetic Engineering and Biotechnology.
    10. Miwa, A., et al., Hypoalbuminemia following abdominal surgery leads to high serum unbound bilirubin concentrations in newborns soon after birth. Neonatology, 2011. 99(3): p. 202-207.
    11. Watchko, J.F., A.R. Spitzer, and R.H. Clark, Prevalence of hypoalbuminemia and elevated bilirubin/albumin ratios in a large cohort of infants in the neonatal intensive care unit. The Journal of Pediatrics, 2017. 188: p. 280-286. e4.
    12. Ullah, S., K. Rahman, and M. Hedayati, Hyperbilirubinemia in neonates: types, causes, clinical examinations, preventive measures and treatments: a narrative review article. Iranian journal of public health, 2016. 45(5): p. 558.
    13. Hansen, T.W.R., Mechanisms of bilirubin toxicity: clinical implications. Clinics in perinatology, 2002. 29(4): p. 765-778.
    14. Porter, M.L. and M.B.L. Dennis, Hyperbilirubinemia in the term newborn. American family physician, 2002. 65(4): p. 599.
    15. Mitra, S. and J. Rennie, Neonatal jaundice: aetiology, diagnosis and treatment. British Journal of Hospital Medicine, 2017. 78(12): p. 699-704.
    16. Puppalwar, P., K. Goswami, and A. Dhok, Review on “evolution of methods of bilirubin estimation”. IOSR Journal of Dental and Medical Sciences, 2012. 1(3): p. 17-28.
    17. Dhungana, N., C. Morris, and M.D. Krasowski, Operational impact of using a vanadate oxidase method for direct bilirubin measurements at an academic medical center clinical laboratory. Pract Lab Med, 2017. 8: p. 77-85.
    18. Zelenka, J., et al., Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. Journal of Chromatography B, 2008. 867(1): p. 37-42.
    19. Martelanc, M., et al., Direct determination of free bilirubin in serum at sub-nanomolar levels. Analytica chimica acta, 2014. 809: p. 174-182.
    20. Martelanc, M., et al., Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum. Talanta, 2016. 154: p. 92-98.
    21. Fung, Y.S., D.X. Sun, and C.Y. Yeung, Capillary electrophoresis for determination of free and albumin‐bound bilirubin and the investigation of drug interaction with bilirubin‐bound albumin. ELECTROPHORESIS: An International Journal, 2000. 21(2): p. 403-410.
    22. Iwatani, S., et al., Fluorescent protein-based detection of unconjugated bilirubin in newborn serum. Sci Rep, 2016. 6: p. 28489.
    23. Kohashi, K., et al., Fluorescence reaction of bilirubin with zinc ion in dimethyl sulfoxide and its application to assay of total bilirubin in serum. Analytica chimica acta, 1998. 365(1-3): p. 177-182.
    24. Santhosh, M., et al., Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosensors and Bioelectronics, 2014. 59: p. 370-376.
    25. El-Beshbishi, S.N., et al., Hyperbilirubinemia and transcutaneous bilirubinometry. Clinical chemistry, 2009. 55(7): p. 1280-1287.
    26. Nagar, G., et al., Reliability of transcutaneous bilirubin devices in preterm infants: a systematic review. Pediatrics, 2013. 132(5): p. 871-881.
    27. Jacques, S.L., et al. Developing an optical fiber reflectance spectrometer to monitor bilirubinemia in neonates. in Laser-Tissue Interaction VIII. 1997. SPIE.
    28. Outlaw, F., et al. Screening for neonatal jaundice with a smartphone. in Proceedings of the 2017 International Conference on Digital Health. 2017.
    29. Swarna, S., et al., The smart phone study: assessing the reliability and accuracy of neonatal jaundice measurement using smart phone application. International Journal of Contemporary Pediatrics, 2018. 5(2): p. 285-289.
    30. Nie, Z. and Y.S. Fung, Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. Electrophoresis, 2008. 29(9): p. 1924-1931.
    31. Keahey, P.A., et al., Point-of-care device to diagnose and monitor neonatal jaundice in low-resource settings. Proceedings of the National Academy of Sciences, 2017. 114(51): p. E10965-E10971.
    32. Tabatabaee, R.S., H. Golmohammadi, and S.H. Ahmadi, Easy diagnosis of jaundice: a smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS sensors, 2019. 4(4): p. 1063-1071.
    33. Zou, Y., et al., Portable and label-free detection of blood bilirubin with graphene-isolated-Au-nanocrystals paper strip. Analytical chemistry, 2018. 90(22): p. 13687-13694.
    34. Tan, W., et al., Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. Lab on a Chip, 2020. 20(2): p. 394-404.
    35. Thompson, B.L., et al., Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nature protocols, 2015. 10(6): p. 875-886.
    36. Chambers, S.D., et al., Effects of static pressure on red blood cells on removal of the air interface. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 1996. 42(6): p. 947-950.
    37. Yasuda, T., et al., Influence of static pressure and shear rate on hemolysis of red blood cells. ASAIO journal, 2001. 47(4): p. 351-353.
    38. Soligard, H.T., O.G. Nilsen, and D. Bratlid, Displacement of bilirubin from albumin by ibuprofen in vitro. Pediatric research, 2010. 67(6): p. 614-618.
    39. Newman, T.B., et al., Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. New England Journal of Medicine, 2006. 354(18): p. 1889-1900.
    40. Total bilirubin (TBIL) chemistry information sheet can be viewed or downloaded; Available from: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A18553/%%/EN_TBIL.pdf.
    41. Nguyen, M.P., et al., Design considerations for reducing sample loss in microfluidic paper-based analytical devices. Analytica chimica acta, 2018. 1017: p. 20-25.
    42. Vivid membrane information sheet can be viewed or downloaded; Available from:https://shop.pall.com/us/en/medical/advancedmaterials/diagnostics/vivid-plasmaseparation-membrane-zidgri78lls.
    43. Korczyk, P.M., et al., Microfluidic traps for hard-wired operations on droplets. Lab on a Chip, 2013. 13(20): p. 4096-4102.
    44. Jin, L., et al., A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Analytica chimica acta, 2020. 1100: p. 215-224.
    45. Zhu, J., et al., Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly (Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor. Biosensors, 2023. 13(3): p. 309.
    46. Yin, K., et al., Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sensors and Actuators B: Chemical, 2021. 344: p. 130242.
    47. Sengan, M. and A. Veerappan, N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg2+ in wastewater and as effective chemocatalyst for organic dye degradation. Microchemical Journal, 2019. 148: p. 1-9.
    48. Tissue culture test plates information sheet can be viewed or downloaded;
    Available from: https://www.tpp.ch/page/produkte/09_zellkultur_testplatte.php.

    QR CODE