研究生: |
戴彣珊 Tai, Wun-Shan |
---|---|
論文名稱: |
雙三配位銥金屬錯合物之藍光材料開發及於有機發光二極體上的應用 Development of Blue-emitting Bis-tridentate Ir(Ⅲ) Phosphors and Applications in Organic Light-Emitting Diodes |
指導教授: |
季昀
Chi, Yun |
口試委員: |
衛子健
Wei, Tzu-Chien 陳建添 Chen, Chien-Tien 洪文誼 Hung, Wen-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 192 |
中文關鍵詞: | 銥金屬錯合物 、咔唑基環金屬配合物 、吡啶咪唑卡賓 、雙酚取代吡啶配位基 |
外文關鍵詞: | Iridium, carbazolyl cyclometalated complexes, pyridoimidazolium carbene, 2,6-diphenoxypyridine |
相關次數: | 點閱:130 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文前半段主要以傳統類型的三牙 imidazolium carbene 配體作為輔助配基,搭配作為發色團的負二價 pyridine 配體,來製備所需的雙三配位銥金屬磷光材料。其中第一系列錯合物,我們著重於光物理性質的結果,探討負二價配位基上修飾不同的官能基團後,對放光半生期造成的改變。由於引入推電子性質的 carbazolyl 衍生物,其結構上有助於提升單重態及三重態轉移速率,故能夠大幅縮短放光半生期 (錯合物 1.3 - 1.5:2.33 ~ 2.65 μs)。同時,受到立體障礙的影響,分子為求結構穩定會形成不共平面的構型,故此類錯合物擁有能夠在保有原始光色的條件下達到提升發光性質的優勢。
第二系列的錯合物則是第一系列的延伸,為了達到更穩定且高效率的藍光材料,我們試圖在負二價配體上插入 1,6-dimethoxy-9H-carbazolyl 作為提供強的 C(sp2)-N(sp2) 鍵結,達到在提升結構穩定性的同時,能夠打斷配位基中 π 共軛性質以便提升發光團的能階差,使發射光譜藍位移。接著,再透過巧妙地修飾推電子基團,增加材料的放光特性。由光物理的量測結果可知,這些新穎的錯合物在 PMMA 薄膜下大部分都能夠展現優秀的量子效率 (Q.Y. = 85 ~ 100%)。挑選藍光錯合物 2.2 及 2.3 進行 OLED 元件製作,最大外部量子效率 (EQE) 分別可達 12.2% 與 16.3%。
而第三系列的錯合物中,於強場配位環境的前提下,引入 2,6-diphenoxypyridine 類型的斷共軛系統,能夠大幅阻斷配體上的 π 共軛,以達到放光位置更加藍位移的目的,其中最為顯著地即是於負二價配體上修飾具有強推電子性質的 NMe2 基團錯合物 3.3 (λmax = 398 nm)。
然而為了有效提高分子的發光效率,不免俗地需要調整現有的分子設計,故在第四系列的錯合物中,我們將第三系列的結構進一步優化,引入 pyridoimidazolylidene carbene 類型的負一價配位基,結合匹配的負二價配體 L20,一改以往由負二價配體作為發光團的模式,促使 LUMO 能階坐落在負一價配體上,使其調控整體的放光特性。再針對光物理性質及分子特性進行探討後,可知此項動作不僅能夠誘發發射光譜藍位移,並且也會造成頻譜的半高寬變窄,可被視為一項新型雙三牙配位銥金屬錯合物、達成高效、高色純度的藍色磷光材料,開拓嶄新的一頁。
In the first chapter of this thesis, we studied a series of bis-tridentate Ir(Ⅲ) phosphors incorporating both monoanionic bis(imidazolylidene)benzene (C^C^C) ancillary and dianionic chromophoric chelate (C^N^N). Among these complexes, we examined the photophysical properties and discussed the changes caused by the modification of different functional groups on the dianionic chelate, particularly the radiative lifetime. Next, we introduced carbazole and its functional analogues to the 4-position of central pyridyl group. The electron-donating characteristic of these fragments can enrich the electron density at the central metal atom and, consequently, enhance the spin-orbit coupling, giving shorter radiative lifetime (1.3 - 1.5:2.33 ~ 2.65 μs). Meanwhile, due to the combining a steric encumbrance, these studied dianionic chelates adopt the non-coplanar configuration, so that such complexes can achieve improved luminescence efficiencies while maintaining the emission color.
In the second chapter, we employed 1,6-dimethoxy-9H-carbazole as substitute for parent carbazole fragment, for which strong C(sp2)-N(sp2) covalent bonding is helpful in providing greater stability upon fabrication of phosphorescence organic light-emitting diodes (PhOLED). Moreover, the cabazolyl-containing chelates can disrupt the effective π-conjugation and raise the ππ* energy gap for inducing the blue-shifted emission. Furthermore, we also functionalized the associated tridentate chelate with electron-donating group to improve their luminescent efficiencies. Particularly, the obtained materials exhibited higher quantum efficiency in PMMA matrix (Q.Y. = 85 ~ 100%), a result of the restricted molecular motion. Finally, we chose blue complexes 2.2 and 2.3 for OLED fabrication, giving the external quantum efficiency (EQE) exceeding 12.2% and 16.3% respectively.
In the third chapter, we introduced 2,6-diphenoxypyridine based tridentate chelates comprising a class of non-conjugated dianionic chelate which caused a substantial blue shifting in emission. The most remarkable observation is complex 3.3, obtained by introduction of NMe2 group with strong electron-donating properties to the dianionic tridentate ligand of complex L20 (λmax = 398 nm).
However, it’s inevitable to further adjust the molecular design in achieving better performance for the studied bis-tridentate Ir(III) complexes. In the fourth chapter, we optimized the aforementioned structural designs and synthesized a new type of bis-tridentate Ir(III) complexes bearing both di-pyridoimidazolylidene carbene and 2,6-diphenoxypyridine chelate L20. Fortunately, the typical emission characteristics at the excited states has been completedly altered, i.e. switching to LUMO that was localized at monoanionic pincer chelate. Finally, from the observed photophysical properties, we concluded that our design would achieve both the narrowed emission FWHM and deep-blue emission hue. Through the understanding of their photophysical and structural properties, we opened a new page in the field of highly efficient blue phosphors.
1.M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys, 1963, 38, 2042-2043.
2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
3.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
4.M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750-753.
5. C. Adachi, M. A. Baldo and S. R. Forrest, J. Chem. Phys., 2000, 87, 8049-8055.
6.T. Főrster, Discuss. Faraday Soc., 1959, 27, 7-17.
7.D. L. Dexter, J. Chem. Phys,, 1953, 21, 836-850.
8.H. Yersin, in Transition Metal and Rare Earth Compounds, 2004, pp. 1-26.
9.M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
10.J. M. Lehn, Acc. Chem. Res., 1978, 11, 49-57.
11.K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature, 1998, 395, 677-680.
12.D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442-444.
13.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4-6.
14.X. Yang, X. Xu and G. Zhou, J. Mater. Chem., 2015, 3, 913-944.
15.H. Fu, Y.-M. Cheng, P.-T. Chou and Y. Chi, Mater. Today, 2011, 14, 472-479.
16.P.-T. Chou, Y. Chi, M.-W. Chung and C.-C. Lin, Coord. Chem. Rev., 2011, 255, 2653-2665.
17.E. Baranoff and B. F. Curchod, Dalton Trans, 2015, 44, 8318-8329.
18.C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082-2084.
19.S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett., 2003, 83, 569-571.
20.J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428.
21.R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818-3820.
22.T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem., 2005, 44, 7992-8003.
23.C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai and C. C. Wu, Angew. Chem. Int. Ed. Engl., 2007, 46, 2418-2421.
24.C. F. Chang, Y. M. Cheng, Y. Chi, Y. C. Chiu, C. C. Lin, G. H. Lee, P. T. Chou, C. C. Chen, C. H. Chang and C. C. Wu, Angew. Chem. Int. Ed. Engl., 2008, 47, 4542-4545.
25.J. Lee, H. F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson and S. R. Forrest, Nat Mater, 2016, 15, 92-98.
26.A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. G. Williams, Inorg. Chem., 2004, 43, 6513-6515.
27.A. J. Wilkinson, H. Puschmann, J. A. K. Howard, C. E. Foster and J. A. G. Williams, Inorg. Chem., 2006, 45, 8685-8699.
28.B. Tong, H.-Y. Ku, I. J. Chen, Y. Chi, H.-C. Kao, C.-C. Yeh, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem., 2015, 3, 3460-3471.
29.C.-Y. Kuei, W.-L. Tsai, B. Tong, M. Jiao, W.-K. Lee, Y. Chi, C.-C. Wu, S.-H. Liu, G.-H. Lee and P.-T. Chou, Adv. Mater., 2016, 28, 2795-2800.
30.C. Y. Kuei, S. H. Liu, P. T. Chou, G. H. Lee and Y. Chi, Dalton Trans, 2016, 45, 15364-15373.
31.H. H. Kuo, Y. T. Chen, L. R. Devereux, C. C. Wu, M. A. Fox, C. Y. Kuei, Y. Chi and G. H. Lee, Adv. Mater., 2017, 29.
32.C. H. Chang, Z. J. Wu, C. H. Chiu, Y. H. Liang, Y. S. Tsai, J. L. Liao, Y. Chi, H. Y. Hsieh, T. Y. Kuo, G. H. Lee, H. A. Pan, P. T. Chou, J. S. Lin and M. R. Tseng, ACS Appl. Mater. Interfaces, 2013, 5, 7341-7351.
33.H.-H. Kuo, L.-Y. Hsu, J.-Y. Tso, W.-Y. Hung, S.-H. Liu, P.-T. Chou, K.-T. Wong, Z.-L. Zhu, C.-S. Lee, A. K. Y. Jen and Y. Chi, J. Mater. Chem., 2018, 6, 10486-10496.
34.W. Song and J. Y. Lee, 2017, 5, 1600901.
35.H. H. Kuo, Z. L. Zhu, C. S. Lee, Y. K. Chen, S. H. Liu, P. T. Chou, A. K. Jen and Y. Chi, Adv Sci (Weinh), 2018, 5, 1800846.
36.Y. You and W. Nam, Chem. Soc. Rev., 2012, 41, 7061-7084.
37.O. S. Wenger, Chem. Rev., 2013, 113, 3686-3733.
38.K.-C. Chang, S.-S. Sun, M. O. Odago and A. J. Lees, Coord. Chem. Rev., 2015, 284, 111-123.
39.H.-C. Su, H.-F. Chen, F.-C. Fang, C.-C. Liu, C.-C. Wu, K.-T. Wong, Y.-H. Liu and S.-M. Peng, J. Am. Chem. Soc., 2008, 130, 3413-3419.
40.S. Tang, J. Pan, H. A. Buchholz and L. Edman, J. Am. Chem. Soc., 2013, 135, 3647-3652.
41.P. Pinter, H. Mangold, I. Stengel, I. Münster and T. Strassner, Organometallics, 2016, 35, 673-680.
42.Z. Chen, L. Wang, S. Su, X. Zheng, N. Zhu, C.-L. Ho, S. Chen and W.-Y. Wong, ACS Appl. Mater. Interfaces, 2017, 9, 40497-40502.
43.Carrascal Riera, Marta et al, PCT Int. Appl., 2012146667, 01 Nov 2012.
44.Wu, Yonggang et al, PCT Int. Appl., 2012121936, 13 Sep 2012.
45.Metz, Stefan et al, U.S. Pat. Appl. Publ., 20120319050, 20 Dec 2012.
46.H.-F. Huang, S.-H. Xu, Y.-B. He, C.-C. Zhu, H.-L. Fan, X.-H. Zhou, X.-C. Gao and Y.-F. Dai, Dyes Pigm., 2013, 96, 705-713.
47.S. Song, X. Sun, X. Li, Y. Yuan and N. Jiao, Org. Lett., 2015, 17, 2886-2889.
48.A.-S. Castanet, F. Colobert and P.-E. Broutin, Tetrahedron Lett., 2002, 43, 5047-5048.
49.L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani and C. Adachi, Angew. Chem. Int. Ed, 2017, 56, 1571-1575.
50.B. Liégault, D. Lee, M. P. Huestis, D. R. Stuart and K. Fagnou, J. Org. Chem., 2008, 73, 5022-5028.
51.E. Mairhofer, L. Flemmich, C. Kreutz and R. Micura, Org. Lett., 2019, 21, 3900-3903.
52.W. Viricel, A. Mbarek and J. Leblond, Angew. Chem. Int. Ed., 2015, 54, 12743-12747.
53.M. Sharif, J. Chen, P. Langer, M. Beller and X. F. Wu, Org. Biomol. Chem., 2014, 12, 6359-6362.
54.E. E. Hardy, K. M. Wyss, M. A. Eddy and A. E. V. Gorden, Chem Commun (Camb), 2017, 53, 5718-5720.
55.L. Hu, A. Patel, L. Bondada, S. Yang, M. Z. Wang, M. Munde, W. D. Wilson, T. Wenzler, R. Brun and D. W. Boykin, Bioorg. Med. Chem., 2013, 21, 6732-6741.
56.F. C. Hu, S. W. Wang, M. Planells, N. Robertson, H. Padhy, B. S. Du, Y. Chi, P. F. Yang, H. W. Lin, G. H. Lee and P. T. Chou, ChemSusChem, 2013, 6, 1366-1375.
57.M. Poyatos, J. A. Mata and E. Peris, Chem. Rev., 2009, 109, 3677-3707.
58.Y.-J. Shiu, Y.-T. Chen, W.-K. Lee, C.-C. Wu, T.-C. Lin, S.-H. Liu, P.-T. Chou, C.-W. Lu, I. C. Cheng, Y.-J. Lien and Y. Chi, J. Mater. Chem., 2017, 5, 1452-1462.
59.P. Ganesan, D.-G. Chen, W.-C. Chen, P. Gnanasekaran, J.-A. Lin, C.-Y. Huang, M.-C. Chen, C.-S. Lee, P.-T. Chou and Y. Chi, J. Mater. Chem., 2020, 8, 4780-4788.
60.K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232-1242.
61.J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson, Inorg. Chem., 2002, 41, 3055-3066.
62.L. Yang, F. Okuda, K. Kobayashi, K. Nozaki, Y. Tanabe, Y. Ishii and M.-a. Haga, Inorg. Chem., 2008, 47, 7154-7165.
63.M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar and A. P. Monkman, J. Mater. Chem., 2012, 22.
64.S. Peng, Y. Zhao, C. Fu, X. Pu, L. Zhou, Y. Huang and Z. Lu, Chemistry, 2018, 24, 8056-8060.
65.S.-C. Lee and Y. S. Kim, Mol. Cryst. Liq. Cryst., 2008, 491, 209-216.
66.C.-H. Lin, Y.-C. Chiu, Y. Chi, Y.-T. Tao, L.-S. Liao, M.-R. Tseng and G.-H. Lee, Organometallics, 2012, 31, 4349-4355.
67.J. Lin, N.-Y. Chau, J.-L. Liao, W.-Y. Wong, C.-Y. Lu, Z.-T. Sie, C.-H. Chang, M. A. Fox, P. J. Low, G.-H. Lee and Y. Chi, Organometallics, 2016, 35, 1813-1824.
68.M. Raynal, C. S. Cazin, C. Vallee, H. Olivier-Bourbigou and P. Braunstein, Chem Commun (Camb), 2008, 3983-3985.