簡易檢索 / 詳目顯示

研究生: 陳芃君
Chen, Peng-Chun
論文名稱: 利用精子抵抗流體特性實踐精子活動力分選之高效能漸擴型微流體系統晶片
Diffuser-Type Micro Fluidic System for High-Throughput Sperm Sorting Based On Sperm's Moving Against Flow Behavior
指導教授: 曾繁根
口試委員: 蘇育全
潘力誠
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 微流體晶片精子活動力分選漸擴型
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微流體生醫晶片用來分選精子的方法粗略可分為利用穩定層流和利用逆向流場兩類:前者利用穩定層流的方式將具有活動力的精子從起始層流分出在後端出口收集,但缺點是收集到具有活動力的精子不能區分其活動力的高低;後者利用逆向流場的方式由於精子有能夠抵抗流場的特性,因此不具有活動力的精子幾乎可以完全帶走,但缺點是逆向流場所產生的剪應力會削弱精子的活動能力。
    本篇所提出之漸擴型微流道晶片,利用精子會抵抗流場之特性採順向流場將精子從進樣口處帶往分選區,縮短精子在流道內運動之距離。流體進入流道內後會因為流道寬度不同而導致流體速度減緩,流道寬度從100μm漸擴至1000μm,漸擴角度為5∘,具有活動力的精子有抵抗流場之特性能停留在流道內,而不具有活動力的精子則會隨著流體被帶往出口處。實驗方法依液體驅動力可分為液壓差被動式及幫浦穩壓主動式兩種方式。液壓差被動式則是以液壓差為2mm高度之時分選區最窄處可產生流體速度為240μm/s,依據精子的運動速度將分別停流於分選區不同之位置;幫浦穩壓主動式則是設定注射式幫浦之流量在0.0648ml/hr,可依公式計算出分選區最窄處產生流速為180μm/s。分選後依取樣方式可分為分層推出和側枝取樣兩種方式,分層推出法為在流道內分別給予一股流體,第一次先將不具活動力的精子推出,第二次再將具有活動力的精子推出,側枝取樣法則是直接從分選區旁加上兩側枝,當精子分選完成後直接從旁取出。實驗結果發現,以被動式載入精子分選率可達78.7%,而取樣方法則為側枝取樣分選率可達84.8%。
    本研究所提出之微流體系統晶片可避免削弱精子的活動力,並可控制取出的精子活動力品級,為多重門檻篩選之微流體系統晶片。


    The methods applied in separating sperms in microfluidic bio-chip can divide in steady laminar flow and reversing flow. Due to motile sperms can across the original laminar to the selection laminar, the motile sperms can be collected in the outlet. The disadvantage of the former way is that we can not tell the sperms motility apart. Sperms can against the flow by nature property, thus, separating the motile sperms by using reversing flow can select motile sperms. However the shearing force in the reversing flow will cripple the sperms motility. The thesis presents a novel chip that diffuser type channel will slow down the fluidic velocity in channel, the motile sperm will stay in the chamber owe to their nature property and the non-motile ones will drift to outlet with flow. By controlling the flow velocity in channel can select the motility of sperm which stayed in channel. The motility of sperm will not cripple, the classification of sperm can be determined as well.

    The thesis presents a novel diffuser type microfluidic chip, based on the sperm can against the fluidic. We use the forward flow instead of the reverse flow to reduce the distance which sperm swims to expanding area. The fluidic velocity in channel will decrease with the vary channel width. The channel width in 100μm increase to 1000μm and the diffuse angle is 5∘. The motile sperm can against flow and stay in the channel while non-motile sperm will drift to the outlet. The fluidic driving force can be concluded into “pressure height passive way” and “continuous steady pressure active way”. The pressure height in 2mm can generate the fluidic velocity in 240μm/s in the passive way and the sperms will stay at the specific position based on their positions. Setting the syringe pump flow rate at 0.0648ml/hr in the active way and the velocity can be calculated into 180μm/s. There are two way can be applied to take the sperm out. One way is by controlling the fluid velocity. The nonmotile sperm can be washed out at the first time while the motile sperm can be washed out at the second time. Another way is adding two branches at the expanding area and the sperm will be taken out from the branches. As the results show, the live and dead ratio in passive way reaches in 78.7% and the live sperm taken from the branches ups to 84.8%.

    The thesis presents a microfluidic device can separate the motile sperm but not to hurt the sperm moltility, moreover the sperm motility can be classfied. It can be considered as multi-criterion separation chip.

    總目錄 中文摘要………………………………………………………………………………Ⅰ 英文摘要………………………………………………………………………………Ⅲ 致謝……………………………………………………………………………………Ⅳ 總目錄…………………………………………………………………………………Ⅴ 圖附錄…………………………………………………………………………………Ⅸ 表附錄…………………………………………………………………………………xi 第一章 緒論……………………………………………………………………………….1 1.1 研究背景………………………………………………………………………1 1.1.1 微機電系統………………………………………………………………1 1.1.2 微流體生醫晶片…………………………………………………………1 1.2 研究動機………………………………………………………………………3 第二章 文獻回顧……………………………………………………………………….…6 2.1 微流體晶片結構本身做精蟲篩選……………………………………………....6 2.1.1 晶片內部微流體層流之特性…………………………………............6 2.1.1.1 以穩定層流分離精子…………………………………………....6 2.1.1.2 利用精子逆流的特性分選具活動力的精子…………….……...9 2.1.1.3 化學物質濃度梯度與精蟲相關研究…………….…….............14 2.1.1.4 以電訊號來量化精液濃度………….…….................................17 2.2 研究目的…………………………………………………………………….….20 第三章 多重門檻篩選晶片分析…………………………………………………….…..23 3.1 流道設計…………………………………………………….………………….23 3.2 流速計算…………………………………………………….………………….25 3.3 晶片製程…………………………………………………….………………….28 3.3.1 黃光微影製程…………………………………….………………….28 3.3.3.1 母模製作…………………………………….………………….28 3.3.3.2 軟微影製作………………………………………………....…..31 3.4 實驗方法…………………………………………………….………………….32 3.4.1 檢體來源其前處理…………………………………….…………………..32 3.4.2 實驗方法…………………………………….………………………….…..35 3.4.2.1 被動式載入…………………….………………………………..37 3.4.2.2 主動式推動…………………….………………………………..38 3.4.2.3 精子取樣………………………………………………………...39 3.4.3 精子取樣……………………………………………………………………39 3.4.3.1 速度層級分選……………………………………………………39 3.4.3.2 分選區旁加上側枝流道取出……………………………………40 3.4.4 精子染色……………………………………………………………………40 3.5 流場分析………………………………………………………………………...41 3.6 效能估算………………….……………….……………….……………………42 3.6.1 晶片可處理的精子數量…………………..………….……………………42 3.6.2 完成檢測所需的時間……………………..………….……………………44 第四章 實驗結果與討論………………….…………….………………………………..45 4.1 母模製作………………….……………………………….…………………….45 4.2 流場分析結果…………………………………………………………………...47 4.3 親水化處理對流道的影響……………………..………….……………………48 4.4 濃度對分選效果的影響……………………..…………….……………………49 4.4.1 豬精原液測試結果……………………..…………….……………………49 4.4.2 豬精原液稀釋10倍測試結果……………………..…………….…..……50 4.5 分選效果………………….……………………………….……………….……51 4.5.1 被動式載入………………….……………………….……………….……51 4.5.2 主動式推動………………….……………………….……………….……52 4.5.3 啞鈴型結構………………….……………………….……………….……53 4.6 精子染色試劑實驗結果………………………………………………….……..54 4.7 精子取樣測試結果……………………………………………………….……..58 4.8 計算機輔助精液分析器分析結果………………….………………….……….59 第五章 結論與展望……………….……………………………….……………..………65 5.1 結論……………………….……………………………….…………….………65 5.2 未來工作………………….……………………………….…………….………65 5.2.1人精測試實驗…………………...……………………………………………65 5.2.2未來工作…………………………...…………………………………………70 5.3 展望……………………………………………………………………………...70 第六章 參考文獻………………….……………………………….…………….….……72

    1. 胡一君、游智勝、林明瑜、胡恆蒼、陳順源,“微型生醫晶片發展與應用”,儀科中心簡訊 69 期,台灣,中華民國94年。
    2. T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda, “Development of bio-MEMS devices for single cell expression analysis,” in Microprocesses and Nanotechnology Conference, 2001 International, 2001, pp. 190-191.
    3. K. Ikuta, S. Maruo, Y. Fukaya, and T. Fujisawa, “Biochemical IC chip toward cell free DNA protein synthesis,” in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998, pp. 131-136.
    4. Z. Zhan, C. Dafu, Y. Zhongyao, and W. Li, “Biochip for PCR amplification in silicon,” in Microtechnologies in Medicine and Biology, 1st Annual International, Conference on. 2000, 2000, pp. 25-28.
    5. 謝明里,“男人你也有一半的責任,男性不孕症及治療”,長庚醫訊,29卷,97年8月,p248
    6. Steptoe PC, Edwards RG, “Birth after the reimplantation of a human embryo.” Lancent, 1978, 2:236
    7. Palermo G, Joris H, Devroey P, Van Steirteghem AC, “Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. ” Lancet, 1992; 340: 17-18
    8. Arie Berkovitz, Fina Eltes, Adrian Ellenbogen, Sigal Peer, Dov Feldberg, Benjamin Bartoov, “Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome?” Human Reproduction, 2006, Vol. 21, No7 pp. 1787-1790
    9. D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology.” Annu Rev Biomed Eng, vol. 4, 2002, pp. 261-286.
    10. Ronald Suh, Shuichi Takayama, and Gary D. Smith, “Microfluidic Applications for Andrology.” Journal of andrology, vol. 26, 2005, pp. 664-679.
    11. B. Cho, T. Schuster, X. Zhu, D. Chang, G. D. Smith, S. Takayama, “A microfluidic device for separating motile sperm from nonmotile sperm via inter-streamline crossings.” 2nd Annual International IEEE-EMBS Special Topic conference on Microtechnologies in Medicine & Biology, 2002, pp156-159.
    12. Brenda S. Cho, Timothy G. Schuster, Xiaoyue Zhu, David Chang, Gary D. Smith, and Shuichi Takayama, “Passively driven integrated microfluidic system for separation of motile sperm.” Anal. Chem., 2003, 75, 1671-1675.
    13. Duck Bong Seo, Yuksel Agea, Z. C. Feng, John K. Crister, “Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure.” Microfluidic Nanofluidic, 2007, vol. 3, pp. 561-570.
    14. Yu An Chen, Zi Wei Huang, Fang Sheng Tsai, Chang Yu Chen, Cheng Ming Lin, Andrew M. Wo, “Analysis of sperm concentration and motility in a microfluidic device.” Microfluidic Nanofluidic , 2010, vol. 10, no.1, pp. 59-67.
    15. T. Qiu, C. Han, R. Ma, L. Xie, Z. Li, K. Su, L. Wang, G. Huang, J. Wang, J. Qiao, W. Xing, J. Cheng, “A microfluidic treadmill for sperm selective trapping according to motility classification.” Transducer, 2011, pp. 1320-1323.
    16. L. Sliwa, “Chemotaction of mouse spermatozoa induced by certain hormones,” Arch Androl, 1995, vol. 35, pp. 105-110.
    17. A. I. Vawda, R. E. Wiley, E. V. Younglai, and D. K. Lobb, “A simple apparatus for studying sperm attraction: chemotaxis induced by relaxin and progesterone.” Medical science research, 1999, vol. 27, pp. 693-696.
    18. Sachiko Koyama, Dragos Amarie, Helena A. Soini, Milos V. Novotny, and Stephen C. Jacobson, “Chemotaxis assays of mouse sperm on microfluidic devices.” Analytival chemistry, 2006, vol. 78, pp. 3354-3359.
    19. Lan Xie, Rui Ma, Chao Han, Kai Su, Qiufang Zhang, Tian Qiu, Lei Wang, Guoliang Huang, Jie Qiao, Jundong Wang, and Jing Cheng, “Integration of sperm motility and chemotaxis screening with a microchannel-based device.” Clinical Chemistry, 2010, 56:8, pp. 1270-1278.
    20. W. H. Coulter, Proc. Natl. Electron. Conference, 1956, vol. 12,pp. 1034-1040.
    21. Loes I. Segerink, Ad J. Sprenkels, Paul M. ter Braak, Istvan Vermes, Albert van den Berg, “On-chip determination of spermatozoa concentration using electrical impedance measurements.” Lab chip, 2010, vol. 10, pp1018-1024.
    22. 張永農、蕭廷龍、謝坤錫、鄭聰穎,”高性能電暈產生機之研製”,行政院國家科學委員會補助產學合作研究計畫成果完整報告
    23. 林重勳,「以SU-8光阻製作之方型微流道內毛細填充現象研究」,中原大學機械工程學系,碩士論文,中華民國九十五年
    24. M. Despont, H. Lorentz, N. Fahrni, J. Brugger, P. Renaud, and P. Vettiger, “High-Aspect-Ratio, Ultrathick, Negative Near-UV Photoresist for MEMS Applications,” Proc. MEMS’9, IEEE, Nagoya, Japan, 1997, pp. 518-521.
    25. L. B. Shettles, “Nuclear morphology of human spermatozoa,” Nature, 1960, vol 186, Issue 4725, pp. 648-649.
    26. M. Yamamot, T. Hioki, T. Ishii, S. Nakajima-Iijima, and S. Uchino, “DAP kinase activity is critical for C2-ceramide-induced apoptosis in PC12 cells,” European Journal of Biochemisty, January 2002, Vol. 269, Issue 1, pp. 139-147

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE