研究生: |
徐易達 Hsu, Yi-Ta |
---|---|
論文名稱: |
藉由改進旅途片段來尋找旅行推銷員問題的近似解 Finding Approximate Solution for Traveling Salesman Problem by Refining Tour Segments |
指導教授: |
蘇豐文
Soo, Von-Wun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 旅行推銷員問題 |
外文關鍵詞: | TSP |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
旅行推銷員問題由來已久,一直是各界熱衷的研究項目,但也因為屬於NP-Hard的問題,當節點數量過多時,程式通常無法有效率地完成。
本篇論文提出一種解決旅行推銷員問題的啟發式演算法。在此演算法中,我們先藉由貪婪演算法找出一個合法的路徑,並使用2-opt與3-opt的方法初步改進此路徑;接著將此路徑分割成數個子路徑,再對各個子路徑做動態規劃,找出各子路徑之局部最佳解,並重新連接成一條新的完整路徑。最後新得之路徑分成數個群組,根據這些群組分割做動態規劃,以縮短路徑長度。
This thesis presents a heuristic algorithm for solving traveling salesman problem by utilizing dynamic programming and divide-and-conquer methods. In our algorithm, a complete, whole tour is divided into several sub-tours, and refined by dynamics programming respectively to get the better solution. In order to escape from local optimal, we modify the refinement algorithm to city group version that refine solution in city group unit. This algorithm does work under many instances with the size of thousand of cities, showed in chapter 4 experimental results).
[1] Bellman, R. (1960), "Combinatorial Processes and Dynamic Programming", in Bellman, R., Hall, M., Jr. (eds.), Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics 10,, American Mathematical Society, pp. 217–249.
[2] Bellman, R. (1962), "Dynamic Programming Treatment of the Travelling Salesman Problem", J. Assoc. Comput. Mach., 9, pp. 61–63
[3] Held, M.; Karp, R. M. (1962), "A Dynamic Programming Approach to Sequencing Problems", Journal of the Society for Industrial and Applied Mathematics, 10 (1): pp. 196–210
[4] G.B. Dantzig, R. Fulkerson, and S. M. Johnson, “Solution of a large-scale traveling salesman problem,” Operations Research 2 (1954), pp. 393-410
[5] S. Lin and B. W. Kernighan, (197 3) “An Effective Heuristic Algorithm for the Traveling Salesman Problem,” Operations Research, vol. 21, pp. 498-516. .
[6] W. Cook, D. Applegate, A. Rohe. (1999) “Chained Lin-Kernighan for large traveling salesman problems.” Research Institute for Discrete Mathematics Report 99887,
[7] TSPLIB, http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/
[8] Kahng, A. B. and Reda, S. (2004) “Match twice and stitch: A new TSP tour construction heuristic.” Operations Research Letters 32, pp. 499-509.
[9] Rego, C. and Glover, F. (2002) “Local search and metaheuristics for the traveling salesman problem,” In the Traveling Salesman Problem and Its Variations, G. Gutin and A.P. Punnen, Eds., Kluwer Academic publishers, pp. 309-368.
[10] Mehrdad Nojoumian and Divya K. Nair (2008) “Comparing Genetic Algorithm and Guided Local Search Methods by Symmetric TSP Instances,” CECCO’08, July 12-16, 2008, Atlanta, Georgia, USA. ACM 978-1-60558-130-9/08/07.