研究生: |
張智杭 |
---|---|
論文名稱: |
金屬直接奈米壓印中錐形模具的成型機制與粗糙表面摩擦行為之研究 Formation mechanism of pyramid mold and friction behavior of roughness surface in direct nanoimprint |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 奈米壓印 、摩擦力 、錐形模具 、成型機制 |
外文關鍵詞: | nanoimprint, friction, pyramid mold, formation mechanism |
相關次數: | 點閱:72 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文討論對以鋁薄膜進行奈米直接壓印時,模具角度對下壓力以及側邊粗糙度對成型結果的影響。
一開始利用分子動力學模擬來討論不同模具角度是經由怎樣的成型機制改變來達成錐形模具下壓力降低的結果,以及不同的側邊粗糙度對於摩擦與成型機制的影響。基於此點,本文在模擬時藉由觀察不同模具角度的模具受力與下壓力以及薄膜內應力來討論接觸面上的摩擦機制以及薄膜內部的成型機制,包括下壓模式、液靜壓區以及基材效應。至於側邊粗糙度的部分則藉著提升表面粗糙度,觀察粗糙度提升後產生的連扣與犁切現象所造成的成型高度變化以及整體下壓力的改變。
為了證明模擬結果本文又進行了奈米壓印實驗,先製備矽模具與鋁薄膜並量測其幾何參數,之後進行奈米壓印實驗並將結果與模擬對照,可發現相同地當模穴填充率降低時,則表面形貌會變為雙峰且成型高度降低。並由這個對照結果可推論模具角度的模擬結果基本上是正確無誤的。
[1] D. Bishop, 2005, “Nanotechnology and the End of Moore’s Law,” Bell Labs Technical Journal Vol. 10(3), p.23
[2] Gary Stix, 2005, “Shrinking Circuits with Water,” Scientific American, p.54.
[3] S. Y. Chou, P. R. Krauss and P. J. Renstrom, 1996, “Nanoimprint Lithography,” American Vacuum Society Technology B, Vol. 14, p. 4129.
[4] 何侑倫, 民93.11,“奈米轉印技術--可改變世界的十大科技之一,”技術尖兵, Vol. 119, 頁20.
[5] D. P. Hansen and John Gunther, 2000, “Polarizer Apparatus for Producing a Generally Polarized Beam of Light,” United States Patent 6108131.
[6] P. Boisse, T. Altan and K. van Luttervelt, “Friction & Flow Stress in Forming & Cutting,” Hermes Science Publishing, p. 35.
[7] P. Boisse, T. Altan and K. van Luttervelt, “Friction & Flow Stress in Forming & Cutting,” Hermes Science Publishing, p. 47.
[8] S. J. Jerrams, 2005, “Friction and Adhesion in Rigid Surface Indentation of Nitrile Rubber,” Materials and Design, Vol. 26, p. 251.
[9] M. R. Begley, A. G. Evans and J. W. Hutchinson, 1999, “Spherical Impression of Thin Elastic Films on Elastic-Plastic Substrates,” International Journal of Solids and Structures, Vol. 36, p. 2773.
[10] Z. Liu, J. Sun and W. Shen, 2002, “Study of Plowing and Friction at the Surface of Plastic Deformed Metals,” Tribology International, Vol. 35, p. 511.
[11] B. Bhushan and S. Sundararajan, 1998, “Micro/Nanoscale Friction and Wear Mechanisms of Thin Films Using Atomic Force and Friction Force Microscopy,” Acta material, Vol. 46, No. 11, p. 3793.
[12] R. W. Carpick, E. E. Flater and K. Sridharan, 2004, “The Effect of Surface Chemistry and Structure on Nano-scale Adhesion and Friction,” Polymeric Materials: Science & Engineering, Vol. 90, p. 197.
[13] C. Tsou, C. Hsu and W. Fang, 2005, “Interfaces Friction Effect of Sliding Contact on Nanoindentation Test,” Sensors and Actuators A, Vol. 117, p. 309.
[14] B. Taljat, G. M. Pharr, 2004, “Development of Pile-Up during Spherical Indentation of Elastic-Plastic Solids,” International Journal of Solids and Structures, Vol. 41, p. 3891.
[15] N. S. Tambe and B. Bhushan, 2004, “Scale Dependence of Micro Nano-Friction and Adhesion of MEMS/NEMS Materials, Coating and Lubricants,” Nanotechnology, Vol. 15, p. 1561.
[16] P. J. Blau, 2001, “The Significance and Use of the Friction Coefficient,” Tribology International, p. 585.
[17] D. Dowson, “History of Tribology,” Professional Engineering Publishing .
[18] Marder and Michael, 2004, “Friction: Terms of Detachment,” Nature Materials, Vol. 3, p. 583.
[19] http://www.nano-world.org/frictionmodule/, 11/15/05.
[20] E. Meyer, R. M. Overney, D. Dransfeld and T. Gyalog, 1998, “Nanoscience: Friction and Rheology on the Nanometer Scale,” World Scientific Publishing.
[21] 鄭鎮東編譯,「摩擦漫談」, 建宏出版社,民國80年1月。
[22] G. Bartels, 2006, “Mesoscopic Aspecs of Solid Friction,” Vom Fachbereich Physik der Universit.
[23] M. H. Muser, L. Wenning and M. O. Robbins, 2001, “Simple Microscopic Theory of Amontons’s Laws for Static Friction,” The American Physical Society, Vol. 86, p.1295.
[24] http://www.20sim.com/webhelp4/library/iconic_diagrams/Mechanical/Friction/Static_Friction_Models.htm, 06/12/5.
[25] M. Hirano, 2006, “Atomistics of Friction,” Surface Science Reports, Vol. 60, p.159.
[26] J. M. Haile, 1997, “Molecular Dynamics Simulation,” John Wiley & Sons, New York.
[27] L. Verlet, 1967, “Computer Experiments on Classical Fluids. Thermodynamical Properties of Lennard-Jones Molecules,” Physical Review, Vol. 159, p.98.
[28] L. A. Girifalco and V. G.Weizer, 1959, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, No. 3, p.687.
[29] 陳星佑, 2005, “溫度效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文.
[30] 謝雲亮, 2005, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “ 國立清華大學碩士論文.
[31] D. S. Balint, V. S. Deshpande, A. Needleman, E. Van der Giessen, 2006, “Discrete dislocation plasiticity analysis of the wedge indentation of films,” Journal of the Mechanics and Physics of Solids, Vol. 54, pp. 2281-2303.
[32] W. D. Nix, and H. Gao, 1998, “Indentation size effects in crystalline materials: a law fofr strain fradient plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, pp.411-425.
[33] Fischer-Cripps , Anthony C.; “Nanoindentation”, SPRINGER, 2004
[34] W. F. Hosford, R. M. Caddell, 1983, “METAL FORMING Mechanics and Metallurgy”, Prentice-Hall, Inc., Englewood Cliffs, N.J. 09632.
[35] J. H. Kang, K. S. Kim, and K. W. Kim, 2007, “Molecular dynamics study of pattern transfer in nanoimprint lithography,” Tribology Letters, Vol. 25, No. 2, pp.93-102.
[36] C. W. Hsieh and C. K. Sung, 2006, “Atomistic-Scale Friction in Direct Imprint Process-A Molecular Dynamics Simulation”.
[37] L. C. Zhang, and K. Mylvaganam, 2006, “Nano-Tribological Analysis by Molecular Dynamics Simulation-A Rewiew, ”Journal of Computational and Theoretical Nanoscience, Vol. 3, pp.167-188.
[38] 賴惟揚, 2006, “摩擦對金屬直接奈米壓印之影響,” 國立清華大學碩士論文.
[39] 呂盈締, 2006, “金屬直接奈米壓印之成形研究,”國立清華大學碩士論文.
[40] H. Katata, M. Yasuda and Y. Hirai, 2006, “Si etching with High Aspect Ratio and Smooth Side Profile for Mold Fabrication,” The Japan Society of Applied Physics, Vol. 45, No. 6B, 2006, pp. 5597–5601
[41] J. X. Gao, L. P. Yeo, M. B. Chan-Park, J. M. Miao, Y. H. Yan, J. B. Sun, Y. C. Lam, and C. Y. Yue, 2006, “Antistick Postpassivation of High Aspect Ratio Silicon Molds Fabricated by Deep-Reactive Ion Etching,” Journal of Microelectromechanical systems, Vol. 15, No. 1, pp.84-93.A.
[42] MIT OpenCourseWare, Tribology , 2004
[43] X. G. Ma, K. Komvopoulos, D. Wan, D. B. Bogy, and Y. S. Kim, 2003, “Effects of film thickness and contact load on nanotribological properties of sputtered amouphous carbon thin films,” Wear, Vol. 254, pp.1010-1018.
[44] H. D. Rowland, A. C. Sun, P. R. Schunk, 2005, “Impact of polymer film thickness and cavity size on polymer flow during embossing:toward process design rules for nanoimprint lithography,” Journal of Micromechanics and Microengineering, Vol.15, pp.2414-2425.
[45] Q. C. Hsu, C. D. Wu and T. H. Fang, 2004,”Deformation Mechanism and punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No.11A, pp.7665-7669.