簡易檢索 / 詳目顯示

研究生: 周恆生
Heng-Shen Chou
論文名稱: 在彩色影像中的人臉偵測方法
Face Detection in Color Images
指導教授: 張隆紋
Long-Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 27
中文關鍵詞: 臉部偵測膚色過濾特徵擷取
外文關鍵詞: Face Detection, Skin-Color Filter, Feature Extraction
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電腦以及網路的快速發展,數位影像輸入設備逐漸在大眾生活中普及,數位影像的取得成本也大幅降低,因此使用人臉部特徵的各種應用 - 如身份認證、臉部表情捕捉系統等,都逐漸進入成熟期,在此臉部偵測扮演著一個很重要的角色,適當的人臉偵測演算法可以減低系統比對時間並增加驗證的準確性,進而得整體應用程式的效能獲得提昇。
    本篇論文提出一個在彩色影像中將人臉特徵區域取出的方法,首先透過高斯模糊的前處理以及對色彩臨界值的比對,我們很容易將影像中符合皮膚色彩的區域劃分出來,再經由型態學的運算,排除掉不符合臉部大小、比例的部分;上述的兩個步驟可大幅降低影像中所需檢驗的面積,提高系統效率。得到可能的候選區域之後進行臉部驗證工作,首先依比例將候選區域切分為左眼、右眼及嘴巴三大區域,再經由適當的計算推演出各區域的特徵,考慮其色彩特性及相對的關係,符合先前所設定的條件者即為所要求之臉部圖像。


    Due to the rapid growth of technologies for network and multimedia, digital input devices have become more and more popular, and the cost of the digital image is much lower now. Various applications which using facial features like personal identify and facial expression capture are coming to the mature period. However, face detection plays an important role in these issues. A good face detection algorithm could slash the computational time in verifying probable face candidates, and improve the comparing efficiency.
    In this paper, we propose a face detection algorithm. In our method, after smoothed the picture to reduce thin color region effects, we can decide which regions are in the skin-tone scope by the color threshold, Morphology operations help us to exclude the parts which not fit in the right size and proportion. Then we divide the probable face candidate into three parts, and try to find the major objects in each divided area. Consider their color characteristic and position relations; we can get the correct face region.

    Abstract Acknowledgements List of Figures List of Tables 1. Introduction………………………………………………1 2. Relative Work………………………….……………………..3 2.1 Gaussian Smoothing ……………….……………….……...3 2.2 Canny Edge Detection……………….……………..…….…5 2.3 Connected Component Labeling…….……………..….……7 2.4 Dilation and Erosion ………………….………..…..……….8 3. The proposed algorithm ...…………….…………....…...10 3.1 Skin Color Filtering ………....………….………….………11 3.2 Major Features Extraction ……………………………….15 3.3 Face Region Verification……………….…………………2 4. Experimental Results………………………………………21 5. Conclusion ………………………………………………25 Reference………………………………….………………..26

    [1]Ming-Hsuan Yang, David Kriegman and Narendra Ahuja,”Detection Faces in Images: A Survey”, IEEE trans, Pattern Analysis Machine Intelligence,vol. 24, no.1,pp. 34-58,January 2002.
    [2] Liming Zhang and Patrick Lenders,” A New Head Detection Method Based on the Region Shield Segmentation in Complex Background”, Proceedings of 2001 Internal Symposium on Intelligent Multimedia, Video and Speech Processing, pp328-331,May 2001
    [3] Rein-Lien Hsu,Mohamed Abdel-Mottaleb and Anil K. Jain,” Face Detection in Color Images” IEEE Transactions on pattern analysis and machine intelligence Vol.24, No.5, p.696-706, MAY 2002
    [4] Yongsheng Gao and Maylor K.H. Leung,” Face Recognition Using Line Edge Map”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, ,p764-779 ,JUNE 2002
    [5] G. Yang and T. S. Huang, “Human Face Detection in Complex Background,” Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
    [6] H.P. Graf, T. Chen, E. Petajan, and E. Cosatto, “Locating Faces and Facial Parts,” Proc. First Int’l Workshop Automatic Face and Gesture Recognition, pp. 41-46, 1995.
    [7] A. Tsukamoto, C.-W. Lee, and S. Tsuji, “Detection and Pose Estimation of Human Face with Synthesized Image Models,” Proc. Int’l Conf. Pattern Recognition, pp.754-757, 1994.
    [8] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
    [9] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, June 1986.
    [10] Rafael C.Gonzalez ,Richard E. Woods,”Digital Image Processing”,Prentice Hall International Edtions”,P333-334,
    [11]Rafael C.Gonzalez ,Richard E. Woods,”Digital Image Processing”,Prentice Hall International Edtions”,P523-532,
    [12] Professor Chuck Stewart ,”Computational Vision Course Notes” http://www.rpi.edu/dept/cs/vision/www/binary/binary.html,Aug,1997
    [13] Rafael C.Gonzalez ,Richard E. Woods,”Digital Image Processing”,Prentice Hall International Edtions”,P175-177

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE