簡易檢索 / 詳目顯示

研究生: 陳惠民
Chen, Hui Min
論文名稱: 以類神經網路為學習基礎之智慧型排程系統
An Intelligent Knowledge Based Scheduling System with Inductive Learning Capability Usin Neural Networks
指導教授: 王立志
Wang Li Chih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
畢業學年度: 81
語文別: 英文
論文頁數: 86
中文關鍵詞: 智慧型;類神經網路;排程
外文關鍵詞: Neural network;Dynamic scheduling;Inductive learning
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 排程在生產過程中扮演極為重要之角色。然而﹐隨著生產系統日益複雜﹐
    大部份的排程問題已證明為NP-Complete。傳統的作業研究工具已無法有

    效率地解決上述問題﹐因此本研究針對動態排程問題提出一套結合傳統分

    析工具與現代人工智慧方法具有學習能力之智慧型排程系統。 SAOSS 採

    用以特徵值為導向之彈性排程策略。亦即在不同的系統狀態下使用當時最

    適切之派工法則 (Dispatching rule) 。基於以上特性,第一章首先闡

    述有關排程之基本概念;製造過程中所發生之排程問題 SAOSS 必需具有學

    習動態排程知識、組織相關資訊的能力。因此,SAOSS採用一套連續型二

    分法算則 (A continuous ID3 Algorithm),構建一由 ADALINES 所組成

    之類神精網路系統。網路節點間之加重權數則隱含了動態排程所需之法則

    。由此方法產生之排程法則十分精簡, SAOSS 的運作效率因而大為提昇

    。以及本文中使用之研究方法。第二章則回顧以往排程之方法。第三章則

    介紹智慧型排程系統之基本架構。第四章則陳述此智慧型排程系統的發展

    步驟。第五章則應用一彈性製造單元作評估。第六章結論與未來發展方向

    。經由實証,顯示 SAOSS 能處理繁雜之動態排程問題。此外,由 CID3

    算則所產生之生產排程法則亦較其它方法簡潔。

    Scheduling, as part of production planning and control, plays

    an inportant role in the entire manufacturing process. Most

    sche duling problems have been proven to be NP-complete which

    degrade s the performance of a conventional OR techniques.

    Hence, a new approach which can deal with sophisticated,

    especially dynamic s scheduling problems is strongly desired.

    In this study, a system attributes oriented knowledge based s

    cheduling system (SAOSS) with inductive learning capability is

    i ntroduced. SAOSS takes a multi-algorithm paradigm so that it

    is able to tackle a variety of scheduling problems. In other

    words, different strategies are are inferred by SAOSS with

    respect to t he scheduling conditions which makes SAOSS more

    intelligent, fle xible, and suitable than others in tackling

    complicated, dynamic scheduling problems. The embedded

    knowledge acquisition mechanism enables SAOSS to acquire

    scheduling heuristics from both expertise's experience a nd

    experiments through inductive learning. An efficient inductiv e

    learning method, a continuous ID3 (CID3) algorithm, induces de

    cision rules for scheduling by converting corresponding

    decision trees into hidden layers of a self-generated neural

    network. Con nection weights between hidden units imply the

    scheduling heuris tics which are interpreted into scheduling

    rules later. An FMC scheduling problem is given for

    illustration and justification.


    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE