研究生: |
黃英叡 Ying-Ruei Huang |
---|---|
論文名稱: |
微球透鏡陣列之設計與製作 Design and Fabrication of Ball Type Microlens Array |
指導教授: |
周懷樸
Hwai-Pwu Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 微透鏡 、光纖耦合 、微製造 |
外文關鍵詞: | microlenses, optical fiber coupling, microfabrication |
相關次數: | 點閱:124 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究重點在於設計與製作微球透鏡陣列並且應用於光纖耦合,由別於一般平凸透鏡的應用(與基材垂直) ,球透鏡適合用於水平任何方向的傳輸更有利於光纖通訊、光儲存系統、生醫科技。
本實驗採用SU-8製作為球透鏡,並以一低溫製程製造微球透鏡陣列,先在晶圓上旋塗SU-8 ( 30µm) 且利用黃光製程做出微圓孔,再利用體型微加工背後蝕刻的方式將晶圓吃穿成為噴嘴結構,再將SU-8填入噴嘴後以擠壓的方式將SU-8擠出,最後因表面張力即內聚力的平衡而形成微球透鏡,其直徑控制於擠壓量的多寡。
目前本研究所完成24X24的微球透鏡陣列,其數值孔徑約為0.63,微球透鏡直徑大小由80~500µm,焦距長度為50~300µm,經量測結果同批生產的直徑誤差約在3%,而每次製作的誤差約在10%,主要的誤差來源是施力的不均勻。
This paper presents a ball type microlens array for optcal fiber coupling. In contrast to conventional microlenses made in a half-spherical geometry, the ball type microlens is a sphere which allows light focusing in all directions on the substrate surface and thus provides the flexibility for fiber coupling in applications of optical communication, optical storage system, and biomedical instruments.
The present microlens is made of photoresist SU-8. We have developed a low temperature batch process by spin-coating SU-8 on a silicon wafer. The thick SU-8 film is patterned by UV lithography to form an array of holes for holding micro-balls. Bulk machining is then applied to formulate an array of nozzles on the wafer. Molten SU-8 is poured onto the wafer and pressed through the nozzle. Micro-balls are formed by a balance between surface tension and cohesion. The diameter of balls is controlled by varying the amount of SU-8 pressed through the nozzle.
In the experimental stage, we have formulated a pattern for a 24 x 24 lens array and can produce micro-balls with numerical aperture about 0.63. Diameters range from 80 to 500μm and focal lengths range from 50 to 300μm. Measurements indicated that the fluctuation of the diameter was within 3%; variations among batches are within 10%. The major contribution to the uncertainty is due to the variation of the pressing force.
[1] R. Danzebrink and M. A. Aegerter, “Deposition of Optical Micro Arrays by Ink-Jet Processes,” Thin Solid Film, 392, pp.223-225 (2001)
[2] C. S. Lee and C. H. Han, “A Novel Refractive Silicon Microlens Array Using Bulk Micromachining Technology,” Sensors and Actuators A, 88, pp.87-90 (2001)
[3] C. C. Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of Microlenses by Direct Photo-Induced Crosslinking Polymerization,” Applied Surface Science, 168, pp.89-91 (2000).
[4] J. You, J. Su, J. Du, Y. Zhang, F. Gao, F. Gao, Y. Guo, and Z. Cui, “Coding Gray-Tone Mask for Refractive Microlens Fabrication, ” Microelectronic Engineering, 53, pp.531-534(2000).
[5] N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin and S. Shtutina, “Fabrication and Testing of Microlens Arrays for the IR Based on Chalcogenide Glassy Resist,” Journal of Non-Crystalline Solids, 198-200, pp. 766-768 (1996)
[6] Y. Fu, “Investigstion of Microlens Fabricated Focused Ion Beam Technology,” Microelectronic Engineering, 56, pp.333-338 (2001).
[7] T. Hirai and S. Hayashi “Lens Functions of Polymer Microparticle Arrays,” Colloids and Surface A: Physiochemical and Engineering Aspects, 153, 503-513 (1999).
[8] E. Anderson, D. Tran, R. Strijek, E. Rezek, R. Johnson, J. Klein, D. Boger, G. Uchiyama, and M. Folkman, “Coupling of Waveguides Todetectors Using Spherical Lenses and Lens Fibers,” IEEE (1998).
[9] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgon, “Photolytic Technique for Producing Microlenses in Photosensitive Glass,” Appl. Opt., 24, 2520 (1985).
[10] J. O. Choi, J. A. Morse, J. C. Corelli, J. P. Silverman, and H. Bakhru,
“Degradation of Poly(Methylmethacrylate) by Deepultraviolet, X-Ray,Electron Beam and Proton Beam Irradiations,” J. Vac. Sc. Technol., B6, pp.3633-3642(1988).
[11] M. Hutley, R. Stevens, and D. Daly, “Microlens Arrays,” Physics World,vol. 4, no. 7, pp. 27, July (1991).
[12] M. C. Hutley, “Optical Techniques for the Generation of Microlens arrays,” J. Mod., Opt. 37, pp.253-265(1990).
[13] P. Heremans, J. Genoe, M. Kuijk, R. Vounck and G. Borghs, “Mushroom Microlenses: Optimized Microlenses by Reflow of Multiplelayers of Photoresist,” IEEE(1997).
[14] Y. S. Lin, C. T. Pan, K. L. Lin, S. C. Chen, J. J. Yang and J. P. Yang,“Polyimide as the Pedestal of Batch Fabricated Micro-Ball Lens Andmicro-Mushroom Array,” IEEE. (2001).
[15] M. Oikawa, K. Iga and T. Sanada, “Distributed-Index Planar Microlens Prepared from Ion-Exchange Technique,” Jpn. J. Appl. Phys., 20, pp.296-298 (1981).
[16] S. C. Shen, C. T. Pan and H. P. Chou, “Batch Assembly Micro Ball Lens Array for Si-Based Optical Coupling Platform in Free Space, ”Optical Society of Japan, June, pp.6-8 (2001).
[17] C. T. Pan, S. C. Shen, M. C. Chou and H. P. Chou, “Electromagnetic Optical Switch for Optical Network Communication,” Journal of Magnetism and Magnetic Materials, (2001).
[18] C. T. Pan, H. Y. Tsai, Y. S. Lin, J. J. Yang, M. Y. Liu, S. C. Chen, M. C. Chou, and H. Yang, “Micro-Optical Components Fabricated by Excimerlaser Ablation,” 第四屆奈米工程暨系統技術研討會論文集, pp.2-129~137, 工業技術研究院, Nov. 1-2, (2000).
[19] Z. D. Popvic, R. A. Sprague and G. A. N. Connel, “Technique for the
Monolithic Fabrication of Microlens Arrays,” Appl. Opt., 27, pp.1281-1284(1988).
[20] S. Sinzinger and J. Jahns, “Microoptics, ” WILEY-VCH,1999.
[21] 狄繼業,何建娃 “幾何光學” 全華書局有限公司,2002 年.
[22] 董德國、陳萬清譯, “光纖通訊” 東華書局有限公司,2000 年.
[23] “微機電系統之技術現況與發展” 財團法人工業技術研究院機械工業研究所,1995 年.