簡易檢索 / 詳目顯示

研究生: 紀依旻
Chi, Yi Min
論文名稱: 以原子層沉積法製備奈米鉑於氮化鈦微孔結構應用於質子交換膜燃料電池之研究
Fabrication of Platinum Nanoparticles on Titanium Nitride Macro/mesoporous Structure by Atomic Layer Deposition for Proton Exchange Membrane Fuel Cell
指導教授: 彭宗平
Perng, Tsong Pyng
口試委員: 葉君棣
柯志忠
彭宗平
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 138
中文關鍵詞: 氮化鈦溶膠-凝膠法相分離微孔結構鉑觸媒原子層沉積技術質子交換膜燃料電池
外文關鍵詞: Titanium nitride, Sol-gel method, Phase separation, Macro-mesoporous structure, Platinum, Atomic layer deposition, Proton exchange membrane fuel cell
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在質子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC) 商品化的過程中最大的挑戰為電池的耐久度及成本。本論文主要研究以溶膠-凝膠伴隨相分離法(sol-gel method accompanied by phase separation)製備氮化鈦微孔結構(TiN macro/mesoporous structure)作為觸媒之載體,取代傳統碳材載體,並以原子層沉積技術(atomic layer deposition, ALD)成長鉑(Pt)觸媒減少貴重金屬之使用量,同時提升使用效率。
    使用聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)誘導產生相分離以製備觸媒之載體,其表面積及孔洞大小可藉由調變PVP之用量來控制,並經由800 oC 持溫兩小時之氮化處理得到氮化鈦微孔結構。之後使用原子層沉積技術於280 oC鍍覆均勻之鉑觸媒,並利用ALD之循環數精準控制顆粒大小及承載量,再於燃料電池測試平台量測自製電極之效率。所有自製電極之鉑重量比功率密度皆高於E-Tek商用電極。進一步將自製電極同時用於陰極及陽極,並對照商用電極,鉑觸媒重量僅為商用電極的二十分之一,其比功率密度高於商用電極3.6倍之多,有效提高觸媒之使用效率。


    The durability and cost of proton exchange membrane fuel cell (PEMFC) are the big challenges for commercialization due to, in part, the degradation of traditional carbon support and the expensive novel metal catalysts. A titanium nitride (TiN) macro/mesoporouse structure, with high electrical conductivity and good corrosion resistance, was deposited on carbon paper. It was fabricated by a sol-gel method accompanied by polymerization-induced phase separation and followed by nitridation to replace the carbon black as a catalyst support for platinum (Pt). Pt was then deposited by atomic layer deposition (ALD) to fabricate the electrode with low Pt loadings and high Pt utilization efficiency.
    Polyvinylpyrrolidone (PVP) was used to fabricate the TiN catalyst support with different surface areas and pore sizes by adjusting the PVP contents. After nitridating at 800 oC for 2 h, the TiN macro/mesoporouse structure with high surface area was formed. Pt nanoparticles were then deposited on the TiN support by ALD at 280 oC with uniform coverage. The particle size and the amount of Pt loading could be controlled precisely by the cycle number of ALD due to the self-limiting reactions. The performance of PEMFC using Pt@TiN electrode was then evaluated by a PEMFC single cell test station. All homemade electrodes showed higher specific power densities, and the MEA using Pt@TiN electrodes on anode and cathode exhibited 3.6 times higher than that of commercial E-Tek electrodes.

    Chapter I Introduction.................................................................................1 1-1 Background of Research...........................................................................1 1-2 Motivation of Research.............................................................................2 1-3 Fundamentals of Fuel Cells......................................................................3 1-3-1 History of developing fuel cell...............................................................................3 1-3-2 Types of fuel cells...................................................................................................5 1-3-3 Advantages and applications of fuel cells...............................................................9 1-4 Atomic Layer Deposition..........................................................................9 1-4-1 Development.........................................................................................................12 1-4-2 Theory and mechanism of ALD process...............................................................12 1-4-3 Advantages and limitations of ALD.....................................................................15 1-5 Sol-gel Method Accompanied by Phase Separation................................18 Chapter II Literature Review.......................................................................21 2-1 Fundamentals of PEMFC........................................................................21 2-1-1 Principle................................................................................................................21 2-1-2 Thermodynamics of fuel cell reactions.................................................................22 2-1-3 Kinetics of fuel cell reactions...............................................................................25 2-2 Components of PEMFC..........................................................................34 2-2-1 Membrane electrode assembly (MEA).................................................................34 2-2-2 Proton exchange membrane (PEM)......................................................................37 2-2-3 Catalyst layer (CL)...............................................................................................42 2-2-4 Gas diffusion layer (GDL)....................................................................................47 2-2-5 Bipolar plates (BPs)..............................................................................................49 2-3 Catalysts..................................................................................................55 2-3-1 Materials...............................................................................................................55 2-3-2 Particle size effect.................................................................................................59 2-3-3 Methods of depositing catalysts............................................................................62 2-3-4 Atomic layer deposition of Pt catalyst..................................................................65 2-4 Catalyst Support......................................................................................70 2-4-1 Carbon catalyst support........................................................................................70 2-4-2 Non-carbonaceous support...................................................................................73 2-4-3 Hybrid support......................................................................................................73 Chapter III Experimental Procedures.........................................................76 3-1 Fabrication of Pt@TiN Macro/mesoporous Structure.............................76 3-1-1 Preparation of TTIP solution................................................................................76 3-1-2 Preparation of TiN macro/mesoporous structure..................................................76 3-1-3 Deposition of Pt nanoparticles by ALD................................................................78 3-2 Characterizations.....................................................................................78 3-3 Preparation of Membrane Electrode Assembly.......................................80 3-4 Single Cell Performance of PEMFC.......................................................82 Chapter IV Results and Discussion..............................................................84 4-1 TiN Macro/mesoporous Structure...........................................................84 4-1-1 Morphologies, surface area and porosity..............................................................84 4-1-2 Crystallinity...........................................................................................................91 4-2 Pt@TiN Macro/mesoporous Structure....................................................93 4-2-1 Morphologies........................................................................................................93 4-2-2 Crystallinity...........................................................................................................96 4-2-3 Growth rate of Pt ALD.........................................................................................96 4-2-4 Pt loading..............................................................................................................99 4-3 Electrochemical Characterization of Pt@TiN Macro/mesoporous Structure................................................................................................104 4-4 Performance of MEA............................................................................107 4-4-1 Pt@TiN as anode................................................................................................107 4-4-1-1 Effect of concentration of PVP....................................................................107 4-4-1-2 Effect of Pt nanoparticle size.......................................................................110 4-4-2 Pt@TiN as cathode.............................................................................................116 4-4-2-1 Effect of concentration of PVP....................................................................116 4-4-2-2 Effect of Pt nanoparticle size.......................................................................116 4-4-3 Pt@TiN as anode and cathode............................................................................119 4-4-3-1 Comparison of commercial E-Tek and homemade electrode......................119 4-4-3-2 Comparison with previous reported work...................................................122 Chapter V Conclusions..............................................................................126 Chapter VI Suggested Future Work...........................................................128 References...................................................................................................129

    1. D. G. Löffler, K. Taylor, and D. Mason, J. Power Sources, 117 (2003) 84-91.
    2. S. Sharma, and B. G. Pollet, J. Power Sources, 208 (2012) 96-119.
    3. K. Nakanishi, T. Amatani, S.Yano, and T. Kodaira, Chem. Mater., 20 (2008) 1108-1115.
    4. Y. Tokudome, K. Fujita, K. Nakanishi, K. Kanamori, K. Miura, K. Hirao, and T. Hanada, J. Ceram. Soc. Jpn., 115 (2007) 925-928.
    5. Y. Yu, M. Wang, W. Gan, Q. Tao, and S. Li, J. Phys. Chem. B, 108 (2004) 6208-6215.
    6. http://www.foodtechinfo.com/FoodPro/Efficiency/cogeneration.htm
    7. N. H. Behling, Elsevier, Amsterdam, (2013).
    8. P. Costamagna, and S. Srinivasan, J. Power Sources, 102 (2001) 242-252.
    9. http://www.fuelcelltoday.com/history
    10. R. O’hayre, S. W. Cha, W. Colella, and F. B. Prinz, Wiley, New York, p12 (2009).
    11. X. Li, Principles of fuel cells, Taylor & Francis, New York, p25 (2006).
    12. B. H. Steele, and A. Heinzel, Nature, 414 (2001) 345-352.
    13. A. Kirubakaran, S. Jain, and R. K. Nema, Renew Sust Energ Rev., 13 (2009) 2430-2440.
    14. J. Larminie, and A. Dicks, Fuel cell systems explained, John Wiley and Sons, (2000).
    15. B. J. Holland, J. G. Zhu, and L. Jamet, Fuel cell teconology and application, Sydney, (2007).
    16. http://www.mpoweruk.com/hydrogen_fuel.htm
    17. T. Suntola, and J. Antson, US Patent 4 058 430, (1977).
    18. V. B. Aleskovskii, thesis, Technological Institute, Leningrad, (1952).
    19. V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, J. Appl. Phys., 113 (2013) 1-101.
    20. H. Wei, Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, (2015) 2960-2993.
    21. K. Nakanishi, J. Porous Mater., 4 (1997) 67-112.
    22. J. Konishi, K.Fujita, K. Nakanishi, and K. Hirao, Chem. Mater., 18 (2006) 6069-6074.
    23. Y. Tokudome, K. Fujita, K. Nakanishi, K. Miura, and K. Hirao, Chem. Mater., 19 (2007) 3393-3398.
    24. J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, and K. Hirao, Chem. Mater., 20 (2008) 2165-2173.
    25. W. Li, X. Guo, Y. Zhu, Y. Hui, K. Kanamori, and K. Nakanishi, J. Sol-Gel Sci. Technol., 67 (2013) 639-645.
    26. K. Nakanishi, and N. Tanaka, Acc. Chem. Res., 40 (2007) 863-873.
    27. National Institute of Standards and Technology, May 2006, PEMFC (Online), http://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html.
    28. Y. Wang, K. S. Chen, and S. C. Cho, MOMENTUM PRESS, LLC, New York (2013).
    29. X. Li, Taylor & Francis, New York, (2006).
    30. R. O’hayre, S. W. Cha, W. Colella, and F. B. Prinz, Wiley, New York, p76 (2009).
    31. http://en.wikipedia.org/wiki/Butler%E2%80%93Volmer_equation.
    32. A. Kirubakaran, S. Jain, and R.K. Nema, Renew. Sust. Energ. Rev., 13 (2009) 2430-2440.
    33. L. Carrette, K. A. Friedrich, and U. Stimming, ChemPhysChem, 1 (2000) 162-193.
    34. T. Berning, and N. Djilali, J. Power Sources, 124 (2003) 440-452.
    35. V. Mehta, and J. S. Cooper, J. Power Sources, 114 (2003) 32-53.
    36. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Int. J. Hydrogen Energy, 35 (2010) 9349-9384.
    37. B. Smitha, S. Sridhar, and A. A. Khan, J. Memb Sci., 259 (2005) 10-26.
    38. P. Costamagna, and S. Srinivasan, J. Power Sources, 102 (2001) 242-252.
    39. N. W. Deluca, Y. A. Elabd, J. Polym Sci., Part B : Polym. Phys., 44 (2006) 2201-2225.
    40. W. H. J. Hogarth, J. C. Diniz da Costa, and G. Q. (Max) Lu, J. Power Sources, 142 (2005) 223-237.
    41. N. Jhaa, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 33 (2008) 427-433.
    42. S. Zhanga, X. Z. Yuana, J. N. C. Hina, H. Wanga, K. A. Friendrichb, and M. Schulze, J. Power Sources, 194 (2009) 588-600.
    43. M. V. Williams, E. K. Begg, L. J. Bonville, H. R. Kunz, and J. M. Fenton, ECS 202nd Meeting, Salt Lake City, UT, (2002).
    44. S. Park, J. W. Lee, and B. N. Popov, Int. J. Hydrogen Energy, 37 (2012) 5850-5865.
    45. A. Bazylak, Int. J. Hydrogen Energy, 34 (2009) 5845-5857.
    46. A. Hermann, T. Chaudhuri, and P. Spagnol, Int. J. Hydrogen Energy, 30 (2005) 1297-1302.
    47. H. Wang, and J. A. Turner, Fuel Cell, 4 (2010) 510-519.
    48. X. Li, and I. Sabir, Int. J. Hydrogen Energy, 30 (2005) 359-371.
    49. J. M. Jaksic, N. M. Ristic, N. V. Krstajic, and M. M. Jaksic, Int. J. Hydrogen Energy, 23 (1998) 1121-1156.
    50. J. K. Nørskov, J. Rossmeisl, A. Logadottir, and L. Lindqvist, J. Phys. Chem. B, 108 (2004) 17886-17892.
    51. P. J. Ferreira, G. J. la O, Y. S. Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, J. Electrochem. Soc., 152 (2005) A2256-A2271.
    52. W. Schmittinger, and A. Vahidi, J. Power Sources, 180 (2008) 1-14.
    53. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S.Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, and N. Iwashita, Chem. Rev., 107 (2005) 3904-3951.
    54. J. S. Choi, W. S. Chung, H. Y. Ha, T. H. Lim, I. H. Oh, S. A. Hong, and H. I. Lee, J. Power Sources, 156 (2006) 466-471.
    55. H. Yang, N. A. Vante, J. M. Le´ger, and C. Lamy, J. Phys. Chem. B, 108 (2004) 1938-1947.
    56. P. Mani, R. Srivastava, and P. Strasser, J. Phys. Chem. C, 112 (2008) 2770-2778.
    57. U. A. Paulus, A. Wokaun, and G. G. Scherer, J. Phys. Chem. B, 106 (2002) 4181-4191.
    58. Q. Huang, H. Yang, Y. Tang, T. Lu, and D. L. Akins, Electrochem. Commun., 8 (2006) 1220-1224.
    59. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin, J. Phys. Chem. C, 111 (2007) 5605-5617.
    60. C. Kim, Y. J. Kim, Y. A. Kim, T. Yanagisawa, K. C. Park, M. Endo, and M. S. Dresselhaus, J. Appl. Phys., 96 (2005) 5903-5905.
    61. V. Radmilovic, H. A. Gasteiger, and P. N. Ross, J. Catal., 154 (1995) 98-106.
    62. E. Frackowia, G. Lota, T. Cacciaguerra, and F. Be’guin, Electrochem. Commun., 8 (2006) 129-132.
    63. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, J. Phys. Chem. B, 105 (2001) 8097-8010.
    64. H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, and B. Yi, Electrochem. Commun., 8 (2006) 707-712.
    65. L. Zhang, J. Zhang, D. P. Wilkinson, and H. Wang, J. Power Sources, 156 (2006) 171-182.
    66. F. Maillard, M. Martin, F. Gloaguen, and J. M. Le´ger, Electrochim. Acta, 47 (2002) 3431-3440.
    67. K. Kinoshita, J. Electrochem. Soc., 137 (1990) 845-848.
    68. M. Shao, A. Peles, and K. Shoemaker, Nano Lett., 11 ( 2011) 3714-3719.
    69. J. H. Wee, K. Y. Lee, and S. H. Kim, J. Power Sources, 165 (2007) 667-677.
    70. A. Esmaeilifar, S. Rowshanzamir, M. H. Eikani, and E. Ghazanfari, Energy, 35 (2010) 3941-3957.
    71. K. D. Beard, M. T. Schaal, J. W. Van Zee, and J. R. Monnier, Appl. Catal., B, 72 (2007) 262-271.
    72. L. Xiong, and A. Manthiram, Electrochim. Acta, 50 (2005) 3200-3204.
    73. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, Electrochim. Acta, 51 (2006) 3814-3819.
    74. S. Hirano, J. Kim, and S. Srinivasan, Electrochim. Acta, 42 (1997) 1587-1593.
    75. M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra, and M. A. Signore, Surf. Coat. Technol., 200 (2005) 1325-1329.
    76. H. T. Kim, J. K. Lee, and J. Kim, J. Power Sources, 180 (2008) 191-194.
    77. M. S. Saha, A. F. Gull´a, R. J. Allen, and S. Mukerjee, Electrochim. Acta, 51 (2006) 4680-4692.
    78. Y. Xing, J. Phys. Chem. B, 108 (2004) 19255-19259.
    79. S. Komarneni, D. Li, B. Newalkar, H. Katsuki, and A. S. Bhalla, Langmuir, 18 (2002) 5959-5962.
    80. L. Xiong, and A. Manthiram, Electrochim. Acta, 50 (2005) 2323-2329.
    81. O. Paschos, P. Choi, H. Efstathiadis, and P. Haldar, Thin Solid Films, 516 (2008) 3796-3801.
    82. R. G. Freitas, R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhões, and E. C. Pereira, Mater. Lett., 60 (2006) 1906-1910.
    83. A. Bayrakceken, A. Smirnova, U. Kitkamthorn, M. Aindow, L. Turker, I. Eroglu, and C. Erkey, J. Power Sources, 179 (2008) 532-540.
    84. M. Wang, K. D. Woo, and D. K. Kim, Energy Convers. Manage., 47 (2006) 3235-3240.
    85. S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang, and W. Zhang, Catal. Commun., 9 (2008) 1045-1049.
    86. J. Li, X. Liang, D. M. King, Y. B. Jiang, and A. W. Weimer, Appl. Catal., B: Environ., 97 (2010) 220-226.
    87. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskela, Chem. Mater., 15 (2003) 1924-1928.
    88. T. Aaltonen, and M. Ritala, J. Mater. Res., 19 (2004) 3353-3358.
    89. H. C. M. Knoops, A. J. M. Mackus, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, Electrochem. Solid-State Lett., 12 (2009) G34-G36.
    90. E. Antolini, Appl. Catal., B: Environ., 88 (2009) 1-24.
    91. M. Terrones, A. R. B. Mendez, J. C. Delgado, F. L. Urias, Y. I. V.Cantu, F. J. R. Macias, A. L. Elias, E. M. Sandoval, A. G. C. Marquez, J. C. Charlier, and H. Terrones, Nano Today, 5 (2010) 351-372.
    92. X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, J. Power Sources, 158 (2006) 154-159.
    93. W. Li, X. Wang, Z. Chen, M. Waje, and Y. Yan, Langmuir, 21 (2005) 9386-9389.
    94. N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, J. Power Sources, 140 (2005) 250-257.
    95. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, J. Phys. Chem. B, 107 (2003) 6292-6299.
    96. W. Yang, S. Yang, J. Guo, G. Sun, and Q. Xin, Carbon, 45 (2007) 397-401.
    97. D. Sebastia´n, M. J. La´zaro, I. Suelves, R. Moliner, V. Baglio, A. Stassi, and A. S. Arico, Int. J. Hydrogen Energy, 37 (2012) 6253-6260.
    98. E. Wallnofer, M. Perchthaler, V. Hacker, and G. Squadrito, J. Power Sources, 188 (2009) 192-198.
    99. D. Sebastia´n, J. C. Caldero´n, J. A. Gonza´lez-Expo´sito, E. Pastor, M. V. Martı´nez-Huerta, I. Suelves, R. Moliner, and M. J. La´zaro, Int. J. Hydrogen Energy, 35 (2010) 9934-9942.
    100. R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, J. Mater. Chem., 20 (2010) 7114-7117.
    101. B. Seger, and P. V. Kamat, J. Phys. Chem. C, 113 (2009) 7990-7995.
    102. P. V. Kamat, J. Phys. Chem. Lett., 1 (2010) 520-527.
    103. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, and S. Ren, Carbon, 50 (2012) 3032-3038.
    104. L. Y. Bian, Y. H. Wang, J. B. Zang, F. W. Meng, and Y. L. Zhao, Int. J. Hydrogen Energy, 37 (2012) 1220-1225.
    105. J. Ding, K. Y. Chan, J. Ren, and F. S. Xiao, Electrochim. Acta, 50 (2005) 3131-3141.
    106. H. Chang, S. H. Joo, and C. Pak, J. Mater. Chem., 17 (2007) 3078-3088.
    107. S. Sharma, and B. G. Pollet, J. Power Sources, 208 (2012) 96-119.
    108. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, and K. Yasuda, Electrochem. Commun., 7 (2005)183-188.
    109. S. L. Gojkovic, B. M. Babic, V. R. Radmilovic, and N. V. Krstajic, J. Electroanal. Chem., 639 (2010) 161–166.
    110. S. Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, and A. E. C. Palmqvist, J. Power Sources, 180 (2008) 185-190.
    111. B. Avasarala , T. Murray , W. Li, and P. Haldar, J. Mater. Chem., 19 (2009) 1803-1805.
    112. B. Avasarala, and P. Haldar, Electrochim. Acta, 55 (2010) 9024-9034.
    113. M. M. O.Thotiyl, and S. Sampath, Electrochim. Acta, 56 (2011) 3549-3554.
    114. H. Chhina, S. Campbell, and O. Kesler, J. Power Sources, 161 (2006) 893-900.
    115. H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc., 154 (2007) B533-B539.
    116. R. Lv, T. Cui, M. S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S. H. Yoon, J. Miyawaki, I.Mochida, and F. Kang, Adv. Funct. Mater., 21 (2011) 999-1006.
    117. Z.Zhang, Y.Huang, J. Ge, C. Liu, T. Lu, and W. Xing, Electrochem. Commun, 10 (2008) 1113-1116.
    118. X. Li, S. Park, and B. N. Popov, J. Power Sources, 195 (2010) 445-452.
    119. N. Jha, R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 36 (2011) 7284-7290.
    120. L. H. Slooff, J. M. Kroon, J. Loos, Marc M. Koetse, and Jörgen Sweelssem, Adv. Funct. Mater., 15 (2005) 689-694.
    121. J. Konishi, K. Fujita, K. Nakanishi, and K. Hirao, Chem. Mater., 18 (2006) 864-866.
    122. S. Y. Huang, P. Ganesan, S. Park, and B. N. Popov, J. Am. Chem., 131 (2009) 13898-13899.
    123. N. Rajalakshmi, N. Lakshmi, and K. S. Dhathathreyan, Int. J. Hydrogen Energy, 33 (2008) 7521-7526.
    124. C. Roth, P. Bleith, C. A. Schwöbel, S. Kaserer, and J. Eichler, Energies, 7 (2014) 3642-3652.
    125. M. S. Sahaa, M. N. Banis, Y. Zhang, R. Li, X. Suna, M. Cai, and F. T.Wagner, J. Power Sources, 192 (2009) 330-335.
    126. H. Meng, P. Kang Shen, Z. Wei, and S. P. Jiang, Electrochem. Solid-State Lett., 9 (2006) A368-A372.
    127. M. Dou, M. Houa, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim. Acta, 92 (2013) 468-473.
    128. M. M. O.Thotiyl , T. Ravikumar and S. Sampath, J. Mater. Chem., 20 (2010) 10643-10651.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE