研究生: |
蔡宛庭 Tsai, Wan-Ting |
---|---|
論文名稱: |
電化學整合多孔矽光子結構與白金奈米多孔矽之超低檢測極限手攜式重金屬感測器 Ultra-Low Detection-Limit of Portable Heavy Metal Sensor by Electrochemistry integrating Porous Silicon Photonic Structure and Platinum Porous Silicon |
指導教授: |
曾繁根
Tseng, Fan-Gang 李明昌 Lee, Ming-Chang |
口試委員: |
孫毓璋
張憲彰 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 多孔矽 、折射率感測器 、光子晶體 、分佈式布拉格反射鏡 、重金屬 、微波輔助法 、電化學感測器 |
外文關鍵詞: | porous silicon, RI sensor, photonics crystal, DBR, heavy metal, microwave-assisted fabrication, electrochemical sensor |
相關次數: | 點閱:234 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今重金屬汙染在全球各地仍是嚴重的問題,水汙染中的重金屬汙染不僅影響相關農漁牧業,更會危害人體健康,因此水中的重金屬檢測顯得格外重要,雖然已有方法檢測這些有害化學物質,但目前我們使用的檢測機制多半複雜、花費高且耗時,因此,本研究希望設計一個能提供更好檢測方式的手攜式的儀器。結合光子晶體結構與電化學技術,我們提供一個易操作、平價且能夠即時量測的手攜式感測器,透過電化學蝕刻的方式製造其奈米多孔隙一維結構以提高其靈敏度,其中此感測器之結構包含兩個對稱的分佈式布拉格反射器與一層缺陷層。
此感測器雖可因其高孔隙率的特性由折射率變化得到高靈敏度的量測結果,但其選擇性相對差且檢測極限因其有較大的反應區而無法降低,為了同時兼顧原有的一維微孔隙結構高靈敏度的優點並提供良好的選擇性與超低檢測極限,我們加入一個電化學還原的程序改善其定性,並降低其在去離子水中之檢測極限至0.152 ppb(μg/L),在湖水中檢測極限至1.529 ppb,另外透過還原時間的延長,可進而降低其在湖水中的檢測極限至1.16 ppb(對鈉、鉀、鎂、鈣及鎳等離子具有選擇性)。
為了進一步增加感測器的穩定性與電鍍均勻性,我們利用開放式系統還原法與微波輔助法在多孔矽結構表面還原鉑奈米顆粒,以置入均勻成核點。鉑具有優越的化學催化性與穩定性因此常做為膜電極觸媒,將其與多孔矽結構結合,不只能增加感測器本身穩定性,更可進而將檢測流程簡化至以電流為檢測依據的電化學感測器。
Nowadays heavy metal contamination is still a serious problem all over the world. Heavy metal detection in water is particularly important since it will not only affect agricultural, fisheries and livestock related, more hazardous to human health. There are some ways to analyze these damaging chemical component, but the current ways for detecting heavy metal in water are too complicated, money costing and time consuming. Thus, we want to design a portable device to offer a better way for heavy metal detection. By utilizing the combination of photonic crystal structure and electrochemical technique, we provide an easy operating, cheap and instant detection portable sensor. The sensor is fabricated by electrochemical etching (ECE), it is a nanoporous silicon (NPS) one dimensional (1D) microcavity structure which consists two symmetrically distributed Bragg reflectors (DBR) and a defect layer, and the porous silicon structure is used to enhance its sensitivity.
These refractive index (RI) sensors we design own the property of high sensitivity to RI change because of its high porosity, but it has poor selectivity to analyze natures and high limit of detection (LOD) due to its large active area. To offer good selectivity and ultra-low LOD while keeping the advantages in sensitivity of the 1D microcavity structures, we applied electrochemical reduction procedure which result in improving the selectivity and lowering the LOD to 0.152 ppb (μg/L) in deionized water, 1.529 ppb in lake water. LOD as low as 1.16 ppb with a selectivity over sodium, potassium, magnesium, calcium, nickel ions, etc., has also been demonstrated with a longer reduction time.
In order to further increase the stability of the sensor and the uniformity when plating, we used open loop reduction and microwave-assisted reduction to combine platinum nanoparticle in the porous silicon to put uniform nucleation point. Platinum has excellent chemical catalysis and stability, therefore it is often used as the electrode catalyst membrane. It can not only enhance the stability of the sensor, but also simplify the detection process when combining with the porous silicon structure.
Johannes Godt, et al., The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol, 2006. 1: p. 22.
2. Lars Järup, Hazards of heavy metal contamination. Br Med Bull, 2003. 68: p. 167-82.
3. 重金屬檢測方法總則. 2012.
4. WHO. Guildlines for Drinking-water Quality-4th ed. 2011.
5. Yadamari Tharakeswar, et al., Optical Chemical Sensor for Screening Cadmium (II) in Natural Waters. Journal of Sensor Technology, 2012. 02(02): p. 68-74.
6. Erica S. Forzani, et al., Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2007. 123(1): p. 82-88.
7. W. Yantasee, et al., Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ Health Perspect, 2007. 115(12): p. 1683-90.
8. G. March, T. D. Nguyen, and B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors (Basel), 2015. 5(2): p. 241-75.
9. J. R. Lai, et al. Porous silicon based infrared photonic-sensor for high sensitive heavy metal ion detection. in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2015.
10. Houk, R.S., Mass spectrometry of inductively coupled plasmas. Analytical Chemistry, 1986. 58: p. 97-105.
11. Doyle, W.M., Principles and applications of Fourier transform infrared (FTIR) process analysis. 1991.
12. P. Vukusic, et al., Quantified interference and diffraction in single Morpho butterfly scales. The Royal Society, 1999: p. 1403-1411.
13. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987. 58(20): p. 2059-2062.
14. John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987. 58(23): p. 2486-2489.
15. Luan, C.-C.C.P.-G., Photonic Crystals. Wu-Nan culture enterprise, 2005.
16. R. D. Meade, et al., eds. Photonic Crystals-2nd ed. 2008. 4.
17. 陳志恆, 吳柏昌, and 李偉, 可調式液晶與光子晶體複合結構的光電特性與應用. 2012.
18. Dennis R. Turner, Electropolishing Silicon in Hydrofluoric Acid Solutions. Journal of The Electrochemical Society, 1958. 105(7): p. 402-408.
19. R. L. Smith and S. D. Collins, Porous silicon formation mechanisms. Journal of Applied Physics, 1992. 71(8): p. R1.
20. V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect. Applied Physics Letters, 1991. 58(8): p. 856-858.
21. A. G. Cullis and L. T.Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 1991. 353(6342): p. 335-338.
22. Farid A. Harraz, et al., Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochimica Acta, 2008. 53(22): p. 6444-6451.
23. H. Ouyang, et al., Macroporous Silicon Microcavities for Macromolecule Detection. Advanced Functional Materials, 2005. 15(11): p. 1851-1859.
24. M. H. Nguyen, et al., Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosens Bioelectron, 2013. 47: p. 80-85.
25. VSY Lin, et al., A porous silicon-based optical interferometric biosensor. Science, 1997. 278: p. 840-843.
26. Sha. Li, J. Huang, and L. Cai, A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology, 2011. 22(42): p. 425502.
27. Andreas Janshoff, et al., Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing. Journal of the American Chemical Society, 1998. 120(46): p. 12108-12116.
28. H. Mabuchi, et al., Real-time detection of individual atoms falling through a high-finesse optical cavity. Optics Letters, 1996. 21(17): p. 1393-1395.
29. Jung-Chul Lee, Jin Young An, and Byung-Woo Kim, Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. Journal of Chemical Technology & Biotechnology, 2007. 82(11): p. 1045-1052.
30. Claudia Maria Simonescu, Application of FTIR Spectroscopy in Environmental Studies. 2012.
31. Wu, Y.-S., et al., Highly efficient platinum nanocatalysts synthesized by an open-loop reduction system with a controlled temperature loop. Electrochimica Acta, 2012. 64: p. 162-170.
32. Zhao, S., et al., Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014. 2(11): p. 3719-3724.