簡易檢索 / 詳目顯示

研究生: 蔡宛庭
Tsai, Wan-Ting
論文名稱: 電化學整合多孔矽光子結構與白金奈米多孔矽之超低檢測極限手攜式重金屬感測器
Ultra-Low Detection-Limit of Portable Heavy Metal Sensor by Electrochemistry integrating Porous Silicon Photonic Structure and Platinum Porous Silicon
指導教授: 曾繁根
Tseng, Fan-Gang
李明昌
Lee, Ming-Chang
口試委員: 孫毓璋
張憲彰
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 多孔矽折射率感測器光子晶體分佈式布拉格反射鏡重金屬微波輔助法電化學感測器
外文關鍵詞: porous silicon, RI sensor, photonics crystal, DBR, heavy metal, microwave-assisted fabrication, electrochemical sensor
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今重金屬汙染在全球各地仍是嚴重的問題,水汙染中的重金屬汙染不僅影響相關農漁牧業,更會危害人體健康,因此水中的重金屬檢測顯得格外重要,雖然已有方法檢測這些有害化學物質,但目前我們使用的檢測機制多半複雜、花費高且耗時,因此,本研究希望設計一個能提供更好檢測方式的手攜式的儀器。結合光子晶體結構與電化學技術,我們提供一個易操作、平價且能夠即時量測的手攜式感測器,透過電化學蝕刻的方式製造其奈米多孔隙一維結構以提高其靈敏度,其中此感測器之結構包含兩個對稱的分佈式布拉格反射器與一層缺陷層。
    此感測器雖可因其高孔隙率的特性由折射率變化得到高靈敏度的量測結果,但其選擇性相對差且檢測極限因其有較大的反應區而無法降低,為了同時兼顧原有的一維微孔隙結構高靈敏度的優點並提供良好的選擇性與超低檢測極限,我們加入一個電化學還原的程序改善其定性,並降低其在去離子水中之檢測極限至0.152 ppb(μg/L),在湖水中檢測極限至1.529 ppb,另外透過還原時間的延長,可進而降低其在湖水中的檢測極限至1.16 ppb(對鈉、鉀、鎂、鈣及鎳等離子具有選擇性)。
    為了進一步增加感測器的穩定性與電鍍均勻性,我們利用開放式系統還原法與微波輔助法在多孔矽結構表面還原鉑奈米顆粒,以置入均勻成核點。鉑具有優越的化學催化性與穩定性因此常做為膜電極觸媒,將其與多孔矽結構結合,不只能增加感測器本身穩定性,更可進而將檢測流程簡化至以電流為檢測依據的電化學感測器。


    Nowadays heavy metal contamination is still a serious problem all over the world. Heavy metal detection in water is particularly important since it will not only affect agricultural, fisheries and livestock related, more hazardous to human health. There are some ways to analyze these damaging chemical component, but the current ways for detecting heavy metal in water are too complicated, money costing and time consuming. Thus, we want to design a portable device to offer a better way for heavy metal detection. By utilizing the combination of photonic crystal structure and electrochemical technique, we provide an easy operating, cheap and instant detection portable sensor. The sensor is fabricated by electrochemical etching (ECE), it is a nanoporous silicon (NPS) one dimensional (1D) microcavity structure which consists two symmetrically distributed Bragg reflectors (DBR) and a defect layer, and the porous silicon structure is used to enhance its sensitivity.
    These refractive index (RI) sensors we design own the property of high sensitivity to RI change because of its high porosity, but it has poor selectivity to analyze natures and high limit of detection (LOD) due to its large active area. To offer good selectivity and ultra-low LOD while keeping the advantages in sensitivity of the 1D microcavity structures, we applied electrochemical reduction procedure which result in improving the selectivity and lowering the LOD to 0.152 ppb (μg/L) in deionized water, 1.529 ppb in lake water. LOD as low as 1.16 ppb with a selectivity over sodium, potassium, magnesium, calcium, nickel ions, etc., has also been demonstrated with a longer reduction time.
    In order to further increase the stability of the sensor and the uniformity when plating, we used open loop reduction and microwave-assisted reduction to combine platinum nanoparticle in the porous silicon to put uniform nucleation point. Platinum has excellent chemical catalysis and stability, therefore it is often used as the electrode catalyst membrane. It can not only enhance the stability of the sensor, but also simplify the detection process when combining with the porous silicon structure.

    致謝 i 摘要 ii Abstract iii 總目錄 v 圖目錄 x 表目錄 xvi 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 2 第二章 文獻回顧 3 2.1 重金屬檢測方式 3 2.1.1 質譜儀(Mass Spectrometry) 3 2.1.2 原子吸收光譜(Atomic Absorption Spectroscopy) 4 2.1.3 高效能液相層析儀(HPLC) 4 2.2 傅立葉轉換紅外光譜儀介紹 4 2.2.1 傅立葉紅外線光譜儀基本原理 5 2.2.2 傅立葉紅外光譜儀偵測方式 6 反射式類型 6 2.3 光子晶體原理與介紹 7 2.3.1 光子晶體簡介 7 2.3.2 光子晶體與能隙 8 2.3.3 含缺陷一維光子晶體的結構與光譜特性 9 2.4 多孔矽蝕刻原理簡介 11 2.4.1 電化學蝕刻原理 11 2.4.2 矽溶解反應 12 2.4.3 多孔矽形成機制 13 2.4.4 多孔矽蝕刻建構光子晶體應用 14 2.5 光學感測器之應用 17 2.5-1 傳統干涉式生醫感測器 17 2.5-2 紅外光波段光子晶體應用 20 2.6 鉑奈米球製備方法簡介 22 2.6-1 開放式系統還原法 22 2.6-2 微波輔助還原法 23 第三章 實驗設計與方法 25 3.1 實驗流程設計與架構 25 3.2 第一代紅外光波段光子晶體的製程與檢測方式 25 3.2.1 多孔矽蝕刻建構光子晶體結構 25 3.2.1 單層多孔矽蝕刻 27 3.2.2 多層多孔矽蝕刻與週期性結構光子晶體製程 27 3.2.3 光譜隨溶液濃度改變而產生位移 27 3.2.4 EDTA與重金屬螯合產生特徵峰改變 27 3.3 第二代可見光波段光子晶體製程與檢測方式 28 3.3.1 多孔矽蝕刻建構光子晶體結構 28 3.3.2 量測方式 29 3.3.2 多孔矽層之表面處理 29 3.4 第三代可見光波段光子晶體製程與設計 29 3.4.1 多孔矽蝕刻建構光子晶體結構 29 3.5 手攜式感測器設計與架構 30 3.5.1 電化學手攜式感測器設計 30 3.5.2 光學分析系統設計 31 3.6 多孔矽結構表面鉑奈米球製程與設計 32 3.6.1 鉑奈米球多孔矽結構設計 32 3.6.2 開放式系統還原法 32 3.6.3 微波輔助還原法 33 3.7 實驗材料與儀器 33 3.7.1實驗儀器 33 第四章 實驗步驟 35 4.1第一代晶片:多孔矽蝕刻建構紅外光波段光子晶體結構 35 4.1.1 單層多孔矽蝕刻 35 4.1.2 多層多孔矽與光子晶體結構蝕刻 36 4.1.3 多孔矽表面犧牲層去除 36 4.2 表面處理 37 4.2.1 表面熱氧化 38 4.2.2 試片清潔 38 4.2.3 硫酸親水處理與氧電漿親水處理 39 4.2.4 試片表面氨基修飾 39 4.3 傅立葉紅外線光譜儀檢測與比較 40 4.3.1 光學系統 40 4.3.2 樣品分析 40 4.4 第二代晶片:多孔矽蝕刻建構可見光波段光子晶體結構 41 4.4.1 晶片結構設定與預處理 41 4.4.2 可見光光子晶體基本效能測試 42 4.5 第三代晶片:多孔矽蝕刻建構可見光波段光子結構 43 4.5.1 晶片結構設定 43 4.5.2 溫度對光譜位移之影響 43 4.5.3 晶片背景訊號與檢測極限量測 44 4.6 電化學還原與手攜式感測器測量 44 4.6.1 電化學還原 44 4.6.2 手攜式感測器量測 44 4.7 鉑奈米球製備於單層多孔矽結構表面 45 4.7.1 單層多孔矽蝕刻 45 4.7.2 單層多孔矽結構表面緻密層去除 46 4.7.3 開放式系統還原法製備鉑奈米球 46 4.7.4 微波輔助還原法 48 第五章 結果與討論 49 5.1 多孔矽蝕刻建構光子晶體結構 49 5.1.1 單層多孔矽蝕刻 49 5.1.2 多層多孔矽蝕刻與光子晶體製程 50 5.1.3 多孔矽表面犧牲層去除 51 5.2 表面處理 52 5.2.1 熱氧化處理 52 5.2.2 晶片親水與表面修飾 52 5.3 第一代紅外光波段分析結果 53 5.3.1 光子晶體晶片紅外光譜比較 53 5.3.2 濕式檢測結果 56 5.3.3 乾式分析結果 57 5.4 第二代可見光波段分析結果 58 5.4.1 多孔矽蝕刻參數確認 58 5.4.2 多孔矽層折射率分析 60 5.4.3 可見光光子晶體建構 63 5.4.4 可見光光子晶體效能測試 66 5.5 第三代可見光波段分析結果 69 5.5.1 可見光光子晶體建構 69 5.5.2 溫度對光譜位移之影響測試結果 70 5.5.3 電化學還原檢測結果 71 5.5.4 電化學手攜式感測器湖水連續檢測結果 72 5.5.5 背景訊號與檢測極限量測結果 73 5.6 白金奈米多孔矽結構 74 5.6.1 多孔矽蝕刻參數確認 74 5.6.2 單層多孔矽結構緻密層去除 76 5.6.3 開放式系統鉑奈米球製備於多孔矽結構之結果 81 5.6.4 微波輔助法鉑奈米球製備於多孔矽結構之結果 89 5.7 鉑奈米球光子晶體結構之鎘金屬檢測結果 92 5.7.1 酸性溶液下檢測結果 92 5.7.2 鹼性溶液下檢測結果 93 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來展望 95 參考文獻 95

    Johannes Godt, et al., The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol, 2006. 1: p. 22.
    2. Lars Järup, Hazards of heavy metal contamination. Br Med Bull, 2003. 68: p. 167-82.
    3. 重金屬檢測方法總則. 2012.
    4. WHO. Guildlines for Drinking-water Quality-4th ed. 2011.
    5. Yadamari Tharakeswar, et al., Optical Chemical Sensor for Screening Cadmium (II) in Natural Waters. Journal of Sensor Technology, 2012. 02(02): p. 68-74.
    6. Erica S. Forzani, et al., Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2007. 123(1): p. 82-88.
    7. W. Yantasee, et al., Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ Health Perspect, 2007. 115(12): p. 1683-90.
    8. G. March, T. D. Nguyen, and B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors (Basel), 2015. 5(2): p. 241-75.
    9. J. R. Lai, et al. Porous silicon based infrared photonic-sensor for high sensitive heavy metal ion detection. in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2015.
    10. Houk, R.S., Mass spectrometry of inductively coupled plasmas. Analytical Chemistry, 1986. 58: p. 97-105.
    11. Doyle, W.M., Principles and applications of Fourier transform infrared (FTIR) process analysis. 1991.
    12. P. Vukusic, et al., Quantified interference and diffraction in single Morpho butterfly scales. The Royal Society, 1999: p. 1403-1411.
    13. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987. 58(20): p. 2059-2062.
    14. John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987. 58(23): p. 2486-2489.
    15. Luan, C.-C.C.P.-G., Photonic Crystals. Wu-Nan culture enterprise, 2005.
    16. R. D. Meade, et al., eds. Photonic Crystals-2nd ed. 2008. 4.
    17. 陳志恆, 吳柏昌, and 李偉, 可調式液晶與光子晶體複合結構的光電特性與應用. 2012.
    18. Dennis R. Turner, Electropolishing Silicon in Hydrofluoric Acid Solutions. Journal of The Electrochemical Society, 1958. 105(7): p. 402-408.
    19. R. L. Smith and S. D. Collins, Porous silicon formation mechanisms. Journal of Applied Physics, 1992. 71(8): p. R1.
    20. V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect. Applied Physics Letters, 1991. 58(8): p. 856-858.
    21. A. G. Cullis and L. T.Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 1991. 353(6342): p. 335-338.
    22. Farid A. Harraz, et al., Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochimica Acta, 2008. 53(22): p. 6444-6451.
    23. H. Ouyang, et al., Macroporous Silicon Microcavities for Macromolecule Detection. Advanced Functional Materials, 2005. 15(11): p. 1851-1859.
    24. M. H. Nguyen, et al., Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosens Bioelectron, 2013. 47: p. 80-85.
    25. VSY Lin, et al., A porous silicon-based optical interferometric biosensor. Science, 1997. 278: p. 840-843.
    26. Sha. Li, J. Huang, and L. Cai, A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology, 2011. 22(42): p. 425502.
    27. Andreas Janshoff, et al., Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing. Journal of the American Chemical Society, 1998. 120(46): p. 12108-12116.
    28. H. Mabuchi, et al., Real-time detection of individual atoms falling through a high-finesse optical cavity. Optics Letters, 1996. 21(17): p. 1393-1395.
    29. Jung-Chul Lee, Jin Young An, and Byung-Woo Kim, Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. Journal of Chemical Technology & Biotechnology, 2007. 82(11): p. 1045-1052.
    30. Claudia Maria Simonescu, Application of FTIR Spectroscopy in Environmental Studies. 2012.
    31. Wu, Y.-S., et al., Highly efficient platinum nanocatalysts synthesized by an open-loop reduction system with a controlled temperature loop. Electrochimica Acta, 2012. 64: p. 162-170.
    32. Zhao, S., et al., Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014. 2(11): p. 3719-3724.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE