研究生: |
卡力亞納 ponnapalli, kalyana kumar |
---|---|
論文名稱: |
合成新穎芳香碳醣苷衍生物並評估其生物活性 synthesis of novel c-aryl glycoside analogues and evaluation of their bioactivities |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
陳建添
Chen, Chien-Tien 汪炳鈞 Uang, Biing-Jiun 梁健夫 Liang, Chien-Fu 蒙國光 Mong, Kowk-Kong Tony |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 426 |
中文關鍵詞: | 芳香碳醣苷衍生物 |
外文關鍵詞: | C-aryl glycoside |
相關次數: | 點閱:66 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧鍵結之醣苷類化合物廣泛存在於天然物中。然而,這些醣體於生物體中容易被醣水解酶或酸性條件下所降解,因此利用硫、氮或碳原子取代醣苷鍵的氧原子已被報導可增加醣苷鍵的穩定性,且與天然物的生物活性相似,具發展為治療藥物的潛力,其中,碳鍵結之醣苷分子具穩定性佳、分佈於自然界中细菌、昆蟲和植物體内等特性,引起科學家廣泛的興趣。文獻中常將多酚類化合物與一個以上的醣基結合,藉此增加二苯乙烯部分的水溶性,然而從自然界純化分離之碳鍵結醣苷分子含量稀少,且目前尚未發展出簡易效率高的合成策略,故其生理作用機制仍有待釐清。
第一部分利用微波輔助之Heck反應合成碳鍵結的二苯乙烯單醣及雙醣,此方法提供高選擇性與高產率的碳鍵結反式二苯乙烯醣苷合成方法,並應用於不同官能基修飾的碘化芳烴基醣體與不同位置取代的二苯乙烯之排列組合,同時完成C2對稱的碳鍵結反式二苯乙烯雙醣,而針對建構好的化合物進行人類SGLT2抑制活性測試,結果顯示其中三個類似物在 12 至 33 µM的濃度範圍中,對hSGLT2有明顯抑制效果。
第二部分發展4-(苯基-C-醣苷基)-1,2,3三唑之改進與多樣化合成策略,其中關鍵合成步驟為利用銅催化炔-疊氮環化加成反應 (copper(I)-catalyzed azide alkyne cycloaddition, CuAAC) 結合疊氮基醣苷化合物與不同取代之碳鍵結苯乙炔醣苷,而使用鄰苯二胺為CuAAC之配體可有效縮短反應時間並簡化純化過程,此方法適用於多種官能基且產率良好。透過交叉反應後得到一個小分子庫,對於β-galactosidase 及β-Galectin的抑制活性測試正在進行中。
O-Glycosides are integral part several natural products. However, the O-glycosidic bond is prone to cleavage under acidic condition and enzymatic in vivo conditions. Therefore several O-glycoside mimics were prepared to address this problem which includes S, N and C-Glycosides. These mimics generally will show similar biological activity compared to the natural compounds and thus can be considered as potential therapeutic targets. Among these glycomimetics C-Glycosides are particularly gained much interest because of their presence in number of natural products and stability under physiological conditions. Structural modification by glycosylation offers an attractive approach to increase the water solubility of polyhydroxy stilbenes. Even though C-glycosides are part of several natural products, the biological activity of C-glycoside stilbenes is not explored particularly due to rare occurrence and lack of straight forward synthetic methods.
In Chapter-1 we have developed microwave assisted Heck-coupling for the synthesis of mono- and bis-C-glycoside stilbenes using C-aryl glycosides and styrenes. This method provides exclusively C-glycoside trans-stilbenes with good yields. The developed Pd-catalyzed Heck-coupling method is successfully applied to various functionalized C-glycosyl aryl iodides and differentially substituted styrenes to deliver several C-glycoside trans-stilbenes with high selectivity. Synthesis of C-2 symmetric bis-C-glycoside-trans-stilbene is also accomplished. The obtained C-glycosyl trans-stilbenes were examined for human SGLT-2 inhibitory activity. Three of the analogues have shown hSGLT-2 inhibition in micro molar range (12 to 33 µM).
In Chapter-2, an improved and diversified synthesis for 4-(Phenyl-C-glycosyl)-1,2,3-triazoles was developed. The key step in the synthesis involves the copper catalyzed azide alkyne click chemistry between glycosyl azide and various substituted C-glycosylated phenyl acetylenes. Use of o-Phenylene diamine as a ligand in Copper catalyzed azide-alkyne click chemistry considerably shorten the reaction the time and allows simple purification. We have generated a small library to triazoles with broad substrate scope in terms of sugars. Interestingly each triazole analogue is having two free sugar units, one attached to the triazole nitrogen and other attached to the phenyl ring at C-4. The synthesized C-glycosylated triazole analogues were assayed for β-galactosidase and β-Galectin inhibition.
1. Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.; Seeberger, P. H. Exploring the Structural diversity of mammalian carbohydrates (″Glycospace″) by statistical databank analysis. ACS Chem. Biol. 2007, 2, 685−691.
2. Laine, R. A. Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: The isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994, 4, 759−767.
3. Nicotra, F.; Airoldi,C.; Cardona, F. Synthesis of C- and S- glycosides. Comprehensive Glycoscience. 2007, 1, 647-683.
4. a) Ernst, B.; Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev.Drug. Discovery 2009, 8, 661−677. b) Wu, C.-Y.; Wong, C.-H. Chemistry and glycobiology. Chem.Commun. 2011, 47, 6201− 6207.
5. Du, Y.; Linhardt, R. J.; Vlahov, I. R. Recent advances in stereo selective C-glycoside synthesis. Tetrahedron 1998, 54, 9913−9959.
6. Levy, D. E. Strategies towards C-glycosides. In the organic chemistry of sugars; Levy, D. E., Fügedi, P., Eds.; CRC Taylor & Francis: Boca Raton, FL, 2006; pp. 269−348.
7. Levy, D. E.; Tang, C. The chemistry of C-glycosides; Pergamon Press: Oxford, 1995.
8. Postema, M. H. D. C-Glycoside synthesis; CRC Press: Boca Raton, FL, 1995.
9. Bertozzi, C. R.; Bednarski, M. D. Synthesis of C-glycosides; stable mimics of O- glycosidic linkages. In modern methods in carbohydrate synthesis; Khan, S. H., O’Neill, R. A., Eds.; Harwood academic publishers: UK, 1996; pp. 316−351.
10. Nishikawa, T.; Adachi, M.; Isobe, M. C-Glycosylation. In glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 755−811.
11. Vauzeilles, B.; Urban, D.; Doisneau, G.; Beau, J.-M. C-Glycosyl analogs of oligosaccharides. In Glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 2023−2077.
12. Beau, J.-M.; Gallagher, T. Nucleophilic C-glycosyl donors for C-glycoside synthesis. Top. Curr. Chem. 1997, 187, 1−54.
13. Togo, H.; He, W.; Waki, Y.; Yokoyama, M. C-Glycosidation technology with free radical reactions. Synlett 1998, 700−717.
14. Zou, W. C-glycosides and Aza-C- glycosides as potential glycosidase and glycosyl transferase inhibitors. Curr. Top. Med. Chem. 2005, 5, 1363−1391.
15. Dos Santos, R. G.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type reactions for the C-glycosylation of phenols. Curr. Org. Chem. 2011, 15, 128−148.
16. Merino, P.; Tejero, T.; Marca, E.; Gomollón-Bel, F.; Delso, I.; Matutec, R. Cross-coupling reactions for the synthesis of C-glycosides and related compounds. Heterocycles 2012, 86, 791−820.
17. Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and biological properties of Quinochalcone C-glycosides from the florets of Carthamus Tinctorius. Molecules 2013, 18, 15220−15254.
18. Leclerc, E.; Pannecoucke, X.; Etheve-Quelquejeu, M.; Sollogoub, M. Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics. Chem. Soc. Rev. 2013, 42, 4270−4283.
19. Lalitha, K.; Muthusamy, K.; Prasad, Y. S.; Vemula, P. K.; Nagarajan, S. Recent Developments in β-C-Glycosides: Synthesis and applications. Carbohydr. Res. 2015, 402, 158−171.
20. Brazier-Hicks, M.; Evans, K. M.; Gershater, M. C.; Puschmann, H.; Steel, P. G.; Edwards, R. The C-Glycosylation of flavonoids in cereals. J. Biol. Chem. 2009, 284, 17926-17934.
21. Furata, T,: Kimura, T.; Kondo, S.; Mihara, H.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Concise total synthesis of flavones C-glycosides having potential anti-Inflammatory activity. Tetrahedron. 2004, 60, 9375-9379.
22. Gaspar, A.; Matos, M.-J.; Garrido.; J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960-4992.
23. Malik.; E.-M.; Muller, C.-E. Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews. 2016, 36, 705-748.
24. Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Synthesis of the Pluramycins 1: Two designed anthrones as enabling platforms for flexible Bis-C- glycosylation, Angew. Chem. Int. Ed. 2014, 53, 1258-1261.
25. Schmidt, R.-R.; Effenberger, G. C-glucosylarenes from O-α-D-glucosyl trichloro acetimidates: Structure of Berginin derivatives. Carbohydr. Res. 1987, 171, 59-79.
26. a) Omura, S.; Tanaka, H.; Oiwa, R.; Awaya, J.; Masuma, R.; Tanak, K. J. Antibiot. 1977, 30, 908-916. b) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. J. Antibiot. 1981, 34, 1517-1518. c) Kusumi, S.; Tomono, S.; Okuzawa, S.; Kaneko, E.; Ueda, T.; Sasaki, K.; Takahashi, D.; Toshima, K. Total synthesis of Vineomycin B 2 . J. Am. Chem. Soc. 2013, 135, 15909-15912.
27. Denmark, S.-E.; Regens, C.-S.; Kobayashi, T. Total synthesis of Papulacandin D. J. Am. Chem. Soc. 2007, 129, 2774-2776.
28. Lee, D. Y. W.; He, M. Recent advances in aryl C-glycoside synthesis. Curr. Top. Med. Chem. 2005, 5, 1333−1350.
29. a) Schmidt, R.-R.; Hoffmann, M. C-glycosides from O-glycosyl trichloro acetimidates. Tetrahedron Lett. 1982, 23, 409-412; b) Schmidt, R.-R.; Frick, W.; Haag-Zeino, B.; Apparao, S. C-Aryl glycosides and 3-deoxy- 2-glyculosonates via inverse type hetero Diels-Alder reaction. Tetrahedron Lett. 1987, 28, 4045-4048.
30. Cai, M.-S.; Qiu, D.-X. Stereoselective and mild method for the synthesis of C-D-glucosylarenes in high yield. Carbohydr. Res. 1989, 191, 125-129.
31. Kuribayashi, T.; Ohkawa, N.; Satoh, S. AgOTfa/SnCl4:A powerful new promoter combination in the aryl C-glycosidation of a diverse range of sugars acetates and aromatic substrates. Tetrahedron. Lett. 1998, 39, 4537-4540.
32. Praly, J.-P.; He, L.; Qin, B.-B.; Tanoh, M.; Chen, G.-R. C-glycopyranosyl- 1,4-benzoquinones and hydroquinones opening access to C-glycosylated analogs of vitamin E. Tetrahedron Lett. 2005, 46, 7081–7085; b) He, L.; Zhang, Y.-Z.; Tanoh, M.; Chen, G.-R.; Praly, J.-P.; Chrysina, E.-D.; Tiraidis, C.; Kosmopoulou, M.; Leonidas, D.-D.; Oikonomakos, N.-G. In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C-D-Glycopyranosylbenzo (hydro)quinones –Inhibition of and Binding to Glycogen Phosphorylase in the Crystal. Eur. J. Org. Chem. 2007, 4, 596–606.
33. a) Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Sc(OTf)3 as efficient catalyst for Aryl C-glycoside synthesis. Synlett. 2004, 225-230; b) Yamauchi, T.; Watanabe, Y.; Suzuki, K.; Matsumoto, T. Bis-C-glycosylation of resorcinol derivatives by an O→C-glycoside rearrangement. Synlett. 2006, 399-402; c) Ho, T.-C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Total synthesis of (+)-Vicenin- 2. Org. Lett. 2016, 18, 4488-4490.
34. Matsumoto, T., Katsuki, M., Suzuki, K. New approach to C-aryl glycosides starting from phenol and glycosyl fluoride. Lewis acid-catalyzed rearrangement of O-glycoside to C-glycoside. Tetrahedron Lett. 1988, 29, 6935-6938.
35. El Telbani, E.; El Desoly, S.; Hammad, M.; Rahman, A.; Schmidt, R.-R. C-Glycosides of visnagin analogues. Eur. J. Org. Chem. 1998, 11, 2317-2322.
36. Sato, S.; Koide, T. Synthesis of vicenin-1 and 3, 6,8- and 8,6-di-C-β-D-(glucopyranosyl-xylopyranosyl)-4’,5,7- trihydroxyflavones using two direct C-glycosylations of naringenin and phloroacetophenone with unprotected D-glucose and D-xylose in aqueous solution as the key reactions. Carbohydr. Res. 2010, 345, 1825-1830.
37. a) Czernecki, S.; Ville, G. Stereospecific C-Glycosylation of Aromatic and Heterocyclic Rings, J. Org. Chem. 1989, 54, 610-612; b) Ellsworth, B.-A.; Doyle, A.-G.; Patel, M.; Caceres-cortes, J.; Meng, W.; Deshpande, P.-P.; Pullockran, A.; Washburn, W.-N. C-Arylglucoside synthesis: Triisopropylsilane as a selective reagent for the reduction of an anomeric C-phenyl ketal. Tetrahedron: Assymmetry 2003, 14, 3243-3247.
38. Gong, H.; Gagne, M.-R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated fully oxygenated C-Alkyl and C-Arylglycosides. J. Am. Chem. Soc. 2008, 130, 12177-12183.
39. Lemaire, S.; Houpis, I.-N.; Xiao, T.; Li, J.; Digard, E.; Gozlan, C.; Liu, R.; Gavryushin, A.; Diene, C.; Wang, Y.; Farina, V.; Knochel, P. Stereoselective C-glycosylation reactions with arylzinc reagents. Org. Lett. 2012, 14, 1480-1483.
40. Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-Aryl glycosides. J. Am. Chem. Soc. 2016, 138, 12049-12052.
41. IDF Diabetes atlas, 7th edition, for latest information please see website at http://www.idf.org/diabetesatlas.
42. Facchini, F. S.; Hua, N.; Abbasi, F.; Reaven, G. M. Insulin resistance as a predictor of age-related diseases. J. Clin. Endocrinol. Metab. 2001, 86, 3574−3578.
43. a) Stumvoll, M.; Goldstein, B. J.; Van Haeften, T. W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333−1346. b) Edelman, S. V. Type II diabetes Mellitus. Adv. Intern. Med. 1998, 43, 449-500.
44. Henry, R. R. Glucose control and insulin resistance in noninsulin-dependent diabetes mellitus. Ann. Intern. Med. 1996, 124, 97-103.
45. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254.
46. Rossetti, L.; Smith, D.; Shulman, G. I.; Papachristou, D.; DeFronzo, R. A. Correction of Hyperglycemia with Phlorizin Normalizes Tissue Sensitivity to Insulin in Diabetic Rats. J. Clin. Invest. 1987, 79, 1510−1515.
47. Oku, A.; Ueta, K.; Arakawa, K.; Ishihara, T.; Nawano, M.; Kuronuma, Y.; Matsumoto, M.; Saito, A.; Tsujihara, K.; Anai, M.; Asano, T.; Kanai, Y.; Endou, H. T-1095, an Inhibitor of Renal Na+ Glucose Cotransporters, May Provide a Novel Approach to Treating Diabetes. Diabetes 1999, 48, 1794−1800.
48. Kamakura, R.; Son, M. J.; de Beer, D.; Joubert, E.; Miura, Y.; Yagasaki, K. Antidiabetic Effect of Green Rooibos (Aspalathus linearis) Extract in Cultured Cells and Type 2 Diabetic Model KK-Ay Mice. Cytotechnology 2015, 67, 699−710.
49. a) Ku, S.-K.; Kwak, S.; Kim, Y.; Bae, J.-S. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo. Inflammation 2015, 38,445−455. b) Jesus, A. R.; Vila-vicosa, D.; machuqueiro, M.; Marques, A. P. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones asSelective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. J. Med. Chem. 2017, 60, 568-579.
50. a) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys, W. G.; Khanna, A.; Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. Discovery of Dapagliflozin: a Potent, Selective Renal Sodium-dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2008, 51, 1145−1149. (b) List, J. F.; Woo, V.; Morales, E.; Tang, W.; Fiedorek, F. T. Sodium-glucose cotransport Inhibition with Dapagliflozin in Type 2 Diabetes. Diabetes Care 2009, 32, 650−657.
51. a) Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. J. Med. Chem. 2010, 53, 6355−6360. b) Meininger, G.; Canovatchel, W.; Polidori, D.; Rosenthal, N. Canagliflozin for the Treatment of Adults with Type 2 Diabetes. Diabetes Manage. 2015, 5, 183−201.
52. a) Karla, S. Sodium Glucose Co-Transporter- 2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355-366. b) Fujita, Y.; Inagaki, N. Renal Sodium Glucose Cotransporter 2 Inhibitors as a Novel Therapeutic Approach to Treatment of Type 2 Diabetes: Clinical Data and Mechanism of Action. J. Diabetes Invest. 2014, 5, 265−275.
53. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254.
54. Goodwin, N. C.; Ding, Z.-M.; Harrison, B. A.; Strobel, E. D.; Harris, A. L.; Smith, M.; Thompson, A. Y.; Xiong, W.; Mseeh, F.; Bruce, D. J.; Diaz, D.; Gopinathan, S.; Li, L.; O’Neill, F.; Thiel, M.; Wilson, A. G. E.; Carson, K. G.; Powell, D. R.; Rawling, D. B. Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1 (SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the Treatment of Diabetes. J. Med. Chem. 2017, 60, 710-721.
55. Ahuja, I.; Kissen, R.; Bones, A. M. Phytoalexins in defense against pathogens. Trends in Plant. Sci. 2012, 17, 73-90.
56. Romero-Perez, A. I.; Lamuela-Raventos, R. M.; Andres-Lacueva, C.; De la Torre-Boronat, M. C. Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content. J. Agr. Food Chem. 2001, 49, 210-215.
57. Baur, J. A.; Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. 2006, 5, 493-506.
58. a) Xu, L.; Liu, C.; Xiang, W.; Chen, H., Qin, X.; Huang, X. Advances in the study of Oxyresveratrol. Int. J. Pharmacol., 2014, 10, 44-54; b) Hung, L. M.; Chen, J. K.; Lee, R. S.; Liang, H. C.; Su, M. J. Benificial effects of Astringin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Freeradical Biology and Medicine. 2001, 30, 877-883.
59. Xiao, J.; Hogger, P. Stability of dietary polyphenols under the cell culture conditions: Avoiding erroneous conclusions. J. Agr. Food Chem. 2015, 63, 1547-1557.
60. a) K. Iguchi, T. Toyoma, T. Ito, T. Shakui, S. Usui, M. Oyama, M. Iinuma, K. Hirano, Anti androgentic activity of resveratrol analogues in prostate cancer LNCaP cells. J. Androl. 2012, 33, 1208-1215; b) Kapetanovic, I. M.; Muzzio, M.; Huang, Z.; Thompson, T. N.; McCormick, D. L.Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its Dimethylether analog, pterostilbene, in rats. Cancer. Chemother. Pharmacol. 2011, 68, 593-601; c) Paul, S.; Mizuno, C. S.; Lee, H. J.; Zheng, X.; Chajkowisk, S.; Rimoldi, J. M.; Conney, A.; Suh, N.; Rimando, A. M. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. Eur. J. Med. Chem. 2010, 45, 3702-3708.
61. Cardullo, N.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.; Tringali, C. Resveratrol related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. J. Nat. Prod. 2015, 78, 2675-2683.
62. a) Larosa, M.; Carneiro, J. T.; Yanez-Gascon, M. J.; Alcantara, D.; Selma, M. V.; Beltran, D.; Garcia-Conesa, M. T.; Urban, C.; Lucas, R.; Tomas-Barberan, F.; Morales, J. C.; Espin, J. C. Preventive oral treatment with resveratrol pro-prodrugs drastically reduce colon Inflammation in rodents. J. Med. Chem. 2010, 53,7365-7376.
63. a) Orsini, F.; Pelizzoni, L.; Verotta, T.; Aburjai, Isolation, synthesis, and antiplatelet aggregation activity of Resveratrol 3-O-β-D glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082-1087; b) Ngoc, T. M.; Minh, P. T. H.; Hung, T. M.; Thuong, P. T.; Lee, I.; Min, B. S.; Bae, K. H. Lipoxygenase inhibitory constituents from Rhubarb. Arch. Pharma. Res. 2008, 31, 598-605.
64. Choi, R. J.; Chun, J.; Khan, S.; Kim, Y. S. Desoxyrhapontigenin, a potent anti-inflammatory phytochemical,inhibits LPS-induced inflammatory responses via suppressing NF-κB and MAPK pathways in RAW 264.7 cells. Int. Immun. Pharmacology 2014, 18, 182-190.
65. Li, P.; Tian, W.; Wang, X.; Ma, X. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. Ex Balf., on fatty acid synthase and human breast cancer cells. Food Function. 2014, 5, 251-256.
66. a) Ito, T.; Tanaka, T.; Ido, Y.; Nakaya, K. I.; Iinuma, M.; Riswan, S. Stilbenoids isolated from stem bark of Shorea Hemsleyana. Chem. Pharma. Bull. 2000, 48, 1001-1005; b) Baderschneider, B.; Winterhalter, P. Isolation and Characterization of Novel Stilbene Derivatives from Riesling Wine. J. Agric. Food Chem. 2000, 48, 2681-2686; c) Wang, Y. H.; Zhang, Z. K.; He, H. P.; Wang, J. S.; Zhou, H.; Ding, M.; Hao, X. J. Stilbene C-glucosides from Cissus repens. J. Asian Nat. Prod. Res. 2007, 9, 631-636.
67. Morikawa, T.; Chaipech, S.; Matsuda, H.; Hamao, M.; Umeda, Y.; Sato, H.; Tamura, H.; Koni, H.; Ninomiya, K.; Yoshikawa, M.; Pongpiriyadacha, Y.; Hayakawa, T.; Muraoko, O. Antidiabetogenic oligostilbenoids and 3-ethyl- 4-phenyl- 3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg. Med. Chem. 2012, 20, 832-840.
68. a) Torres, P.; Poveda, A.; Barbero, V.; Parra, J. L.; Comelles, F.; Ballesteros, A. O.; Plou, F. J. Enzymatic Synthesis of α-Glucosides of Resveratrol with surfactant activity. Adv. Synth. Catal. 2011, 353, 1077-1086; b) Zhou, M.; Hamza, A.; Zhan, C. G.; Thorson, J. S. Assessing The Regioselectivity of OleD-Catalyzed glycosylation with a Diverse Set of Acceptors. J. Nat. Prod. 2013, 76, 279-286.
69. Bokor, E.; Kun, S.; Goyard, D.; Toth, M.; Praly, J. P.; Vidal, S.; Somsak, L.-C. Glycopyranosyl Arenes and Hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 2017, 117, 1687-1764.
70. a) Santos, R. G. D.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type Reactions for the C-Glycosylation of Phenols. Curr. Org. Chem. 2011, 15, 128-148; b) Sinay P, Pure and Appl Chem. 1997, 69, 459-463.
71. a) Mavlan, M.; Ng, K.; Panesar, H.; Yepremyan, A.; Minehan, T. G. Synthesis of 3,3'-di-O-methyl Ardimerin and Exploration of Its DNA Binding Properties. Org. Lett. 2014, 16, 2212-2215; b) Palmacci, E. R.; Seeberger, P. H. Synthesis of C-Aryl and C-AlkylGlycosides Using Glycosyl Phosphates. Org. Lett. 2001, 3, 1547-1550.
72. a) Cheprakov, A. V.; Beletskaya, I. P. The Heck reaction as a sharpening stone of Palladium catalysis. Chem. Rev. 2000, 100, 3009-3066; b) Phan, N. T. S.; Van Der Sluys, M.; Jones, C.W. On the nature of the active species in Palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings homogeneous or heterogeneous Catalysis, a critical review. Adv. Synth. Catal. 2006, 348, 609-679.
73. Rodebaugh,R.; Debenham, J. S.; Fraser-Reid, B. Debenzylation of complex oligosaccharides using ferric chloride. Tetrahedron Lett. 1996, 37, 5477-5478.
74. Ward, D. E.; Gai, Y.; Kaller, B. F. [3+3] Annulation Based on 6-Endo- Trig Radical Cyclization: Regioselectivity and Diastereo-selectivity. J. Org. Chem. 1995, 60, 7830-7836.
75. Konishi, H.; Aritomi, K.; Okano, T.; Kiji, J. A mild selective mono bromination reagent system for alkoxy benzenes: N-Bromosuccinimide- silica gel. Bull. Chem. Soc. Jpn. 1989, 62, 591-593.
76. Castanet, A. S.; Colobert, F. O.; Broutin, P. E. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid. Tetrahedron Lett. 2002, 43, 5047-5048.
77. Kappe, C. O. Controlled Microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
78. Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted Chemistry of Carbohydrates. Curr. Org. Chem. 2004, 8, 511-538.
79. a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685-4696; b) Xu, H. J.; Zhao, Y. Q.; Zhou, X. F. Palladium catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J. Org. Chem. 2011, 76, 8036-8041.
80. Motawia, M. S.; Olsen, C. E.; Denyer, K.; Smith, A. M.; Moller, B. L. Synthesis of 4’-O-acetyl-maltose and α-D-galactopyranosyl-(1→4)-D-glucopyranose for biochemical studies of amylose biosynthesis. Carbohydr. Res. 2001, 330, 309-318.
81. Nishi, Y.; Tanimoto, T. Preparation and characterization of branched β-cyclodextrins having α–L-fucopyranose and a study of their functions. Biosci. Biotechnol. Biochem. 2009, 73, 562-569.
82. Schuler, P.; Fischer, S. N.; Marsch, M.; Oberthur, M. fEfficient α-Mannosylation of Phenols: The role of carbamates as scavengers for activated glycosyl donors. Synthesis 2013, 45, 27-39.
83. Gao, Q.; Gallop, M. A.; Xiang, J. Platinum containing compounds exhibiting cytostatic activity, synthesis and methods of use. (Xenoport Inc) WO Patent WO091790 A1, 2006.
84. Ramtohul, Y. K.; Das, S. K.; Cadilhac, C.; Reddy, T. J.; Gallant, M.; Liu, B.; Dietrich, E.; Vallee, F.; Martel, J.; Poisson, C. Mannose derivatives for treating bacterial infections. (Vertex Pharmaceuticals Incorporation) WO Patent WO100158 A1, 2014.
85. Castaneda, F.; Kinne, R. K. A. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol. Cell. Biochem. 2005, 280, 91-98.