研究生: |
陳冠傑 Chen, Guan-Jie |
---|---|
論文名稱: |
直接散熱之壓電風扇設計與測試 Design and Test of Piezoelectric Fans for Direct Cooling |
指導教授: |
許文震
Sheu, Wen-Jenn |
口試委員: |
王訓忠
Shwin-Chung Wong 王啟川 Chi-Chuan Wang 陳炎洲 Yen-Cho Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 直接冷卻 、散熱片 、震盪 、壓電風扇 、黏著劑 |
外文關鍵詞: | Direct cooling, Fin, Vibration, Piezoelectric fan, Bonding glue |
相關次數: | 點閱:78 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種直接冷卻的概念,將壓電片黏貼於紅銅散熱片上,利用震盪散熱片的方法來增加散熱效果。
在單一散熱片(壓電風扇)的測試中,改變黏著劑的種類與壓電片的長度來進行尖端位移與尖端風速的量測。實驗結果顯示,選用剪切強度愈大的黏著劑,壓電風扇的衰退量愈低;選用硬度較高的黏著劑,壓電風扇的尖端位移量也愈大。在施加100 V電壓下,可產生尖端位移量10.9 mm、尖端風速2.3 m/s。
將五片單一散熱片組成陣列式的散熱模組,改變加熱瓦數來進行散熱測試,結果顯示在發熱源為5 W下,熱對流係數比自然對流增加約9 %。造成此熱傳效果不佳的原因為尖端位移量太小、鰭片整體表面效率太低與接觸熱阻過大。此些因素對熱傳的負面影響,大於散熱片擺盪時增加熱傳的效果,所以整體散熱效果的提升並不明顯。
使用導熱膠將散熱片與基座完全固定,可改善尖端位移問題。實驗結果顯示熱阻比自然對流降了33 %,熱對流係數提升64 %。將散熱片厚度增加至0.28 mm(長度為55 mm),鰭片整體表面效率可達0.9以上。若散熱片能一體成形,且能精準地控制共振頻率,使其能保持同步擺動,散熱效果會更加明顯。
This study presents a concept for direct cooling. Attaching the piezoelectric actuators to the copper fins can improve the heat transfer rate by the method of vibration.
The single piece named piezoelectric fan with various piezoelectric patch geometries and bonding glues are made and tested. It is found that the decay of performance is reduced with the shear strength of glues and tip displacement is increased with the hardness of glues. The maximum tip displacement and tip velocity are 10.9 mm and 2.3 m/s respectively as driven by a 100 V power source.
For the fin array with five pieces plates, the heat load is conducted. It is found that the convection heat transfer coefficient can enhance 9 % under natural convection with a 5 W heat load. The heat dissipation with vibrating fins is not as good as expected owing to a small tip displacement, low overall surface efficiency and great contact resistance.
The tip displacement can be improved by fixing the fins and base completely with a thermally conductive adhesive between them. The results reveal that the thermal resistance reduces 33 % and heat transfer coefficient enhances 64 % under natural convection. The overall surface efficiency can reach to be 0.9 by increasing the fin thickness to 0.28 mm (fin length is 55 mm). If the fin system can always remain an in-phase vibration condition with the fins manufactured as an integral part and the resonant frequency controlled precisely, the heat transfer performance will be enhanced markedly.
[1] S. F. Liu, R. T. Huang, W. J. Sheu, C. C. Wang, Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement, International Journal of Heat and Mass Transfer 52 (11–12) (2009) 2565–2570.
[2] M. Toda, S. Osaka, Vibrational fan using the piezoelectric polymer PVF2, Proceedings of the IEEE 67 (8) (1979) 1171–1173.
[3] J. H. Yoo, J. I. Hong, W. Cao, Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices, Sensors and Actuators 79 (1) (2000) 8–12.
[4] T. Acikalin, S. M. Wait, S. V. Garimella, A. Raman, Experimental investigation of the thermal performance of piezoelectric fans, Heat Transfer Engineering 25 (1) (2004) 4–14.
[5] T. Acikalin, S. V. Garimella, A. Raman, J. Petroski, Characterization and optimization of the thermal performance of miniature piezoelectric fans, International Journal of Heat and Fluid Flow 28 (4) (2007) 806–820.
[6] M. Kimber, S.V. Garimella, A. Raman, Local heat transfer coefficients induced
by piezoelectrically actuated vibrating cantilevers, Journal of Heat Transfer 129 (2007) 1168–1176.
[7] M. Kimber, S.V. Garimella, Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan, International Journal of Heat and Mass Transfer 52 (19–20) (2009) 4470–4478.
[8] S. F. Sufian, M. Z. Abdullah, J. J. Mohamed, Effect of synchronized piezoelectric fans on microelectronic cooling performance, International Communications in Heat and Mass Transfer 43 (2013) 81–89.
[9] W. J. Sheu, R. T. Huang, C. C. Wang, Influence of bonding glues on the vibration of piezoelectric fans, Sensors and Actuators 148 (1) (2008) 115–121.
[10] H. K. Ma, H. C. Su, W. F. Luo, Investigation of a piezoelectric fan cooling system with multiple magnetic fans, Sensors and Actuators 189 (2013) 356–363.
[11] R. Schacht, A. Hausdorf, B. Wunderle, B. Michel, Frictionless air flow blade fan for thermal management of electronics, in: The Thirteenth IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, 2012, pp. 1320–1326.
[12] R. Lemlich, Effect of vibration on natural convective heat transfer, Industrial and Engineering Chemistry 47 (6) (1955) 1175–1180.
[13] R. Lemlich, M. A. Rao, The effect of transverse vibration on free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer 8 (1) (1965) 27–33.
[14] A. S. Dawood, B. L. Manocha, S. M. J. Ali, The effect of vertical vibrations on natural convection heat transfer from a horizontal cylinder, International Journal of Heat and Mass Transfer 24 (3) (1981) 491–496.
[15] J. Soria, M. P. Norton, The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate, Experimental Thermal and Fluid Science 4 (2) (1991) 226–238.
[16] D. K. Kim, J. W. Lee, M. G. Lee, H. J. Kim, Study on vibration-assisted heat transfer for isolated fins, Advanced Materials Research 287–290 (2011) 2364–2368.
[17] S. Dey, D. Chakrborty, Enhancement of convective cooling using oscillating
fins, International Communications in Heat and Mass Transfer 36 (5) (2009) 508–512.
[18] H. S. Park, Development of a piezoelectric heat sink, Master Thesis, Korea Advanced Institute of Science and Technology, Korea, 2010.
[19] H.K. Ma, B. R. Chen, H.W. Lan, K.T. Lin, C.Y. Chao, Study of an LED device with vibrating piezoelectric fins, in: The twenty-fifth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, 2009, pp. 267–272.
[20] Audiowell Electronics (GuangZhou) Co., LTD., http://www.audiowell.com.cn/, 2008.
[21] S. S. Rao, Mechanical Vibrations, 5th ed., Prentice Hall, Upper Saddle River, 2011.
[22] R. J. Goldstein, Fluid Mechanical Measurements, first ed., Hemisphere, New York, 1983.
[23] S. W. Churchill, H. H. S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate, International Journal of Heat and Mass Transfer, 18 (11) (1975) 1323–1329.
[24] Y. Shabany, Radiation heat transfer from plate-fin heat sinks, in: The twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, 2008, pp. 132–136.
[25] S.F. Richard, E.B. Donald, Theory and Design for Mechanical Measurements, fifth ed., Wiley, New York, 2011.
[26] A. Bar-Cohen, W. M. Rohsenow, Thermally optimum spacing of vertical natural convection cooled parallel plates, Journal of Heat Transfer, 106 (1) (1984) 116–123.
[27] 周卓明, 壓電力學, 初版, 全華科技圖書, 台灣, 2003.