簡易檢索 / 詳目顯示

研究生: 曾仕竣
Zeng, Shi-Jun
論文名稱: 熱界面材料用之石墨烯/奈米銀線/矽橡膠奈米複合材料之製備及性質研究
Preparation and Characterization of Graphene/ Silver Nanowires /Silicone rubber Nanocomposites for Thermal Interface Material
指導教授: 馬振基
Ma, Chen-Chi
口試委員: 江金龍
陳景祥
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 203
中文關鍵詞: 矽橡膠石墨烯奈米銀線熱傳導
外文關鍵詞: silicone rubber, graphene, silver nanowire, thermal conductivity
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在製備具有良好熱傳導性質之奈米銀線/石墨烯/矽橡膠高分子複合材料,矽橡膠硬化後的彈性體具有高透明度、柔軟性、寬廣的耐溫範圍(-40~180℃)、尺寸安定性、絕緣性及耐化學品腐蝕等特性,本研究嘗試添加高熱傳導係數的石墨烯及奈米銀線,以改善矽橡膠材料導熱能力不佳的缺點。
    本研究第一部分是嘗試以兩種不同方式改質石墨烯,第一種方式是以modified Hummers' method製備氧化石墨烯(Graphene oxide, GO),並接枝上丙烯醯胺(Acrylamide),再利用還原劑硼氫化納(NaBH4)進行還原,此種改質石墨烯命名為AA-RGO,另一種方式則是先將GO利用NaBH4進行還原後,所得產物為GNP,再利用催化劑EDC ( 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide)將Acrylamide接枝於GNP表面,製備出AA-GNP,並將AA-RGO、AA-GNP與未改質石墨烯GNP三種填充材料分別加入Dow Corning® 184 Silicone Rubber (SR)之中,以溶劑法製備成矽橡膠複合材料,由研究結果顯示,添加10 phr AA-RGO之矽橡膠複合材料之熱傳導係數由0.180 W/mK提升至0.412 W/mK,與其他複合材料比較有最顯著的提升效果。
    第二部分則是以先前熱傳導係數表現較好的6 phr AA-RGO/SR及10 phr AA-RGO/SR複合材料作為基礎,並添加不同含量之苯硫酚(Thiophenol)進行表面改質的奈米銀線(mAgNWs),由研究結果顯示,添加10 phr AA-RGO及10 phr mAgNWs矽橡膠複合材料具有最佳的導熱性質,其熱傳導係數由0.18 W/mK增加至1.289 W/mK,尺寸安定性也有顯著改善,熱膨脹係數由310μm/m℃下降至155.5μm/m℃。


    This study reports the development of graphene/silver nanowire (AgNWs) /silicone rubber nanocomposites with high thermal conductivity. Silicone rubber (SR) processes unusual properties with soft, stable, non-toxic, and non-flammable preperties, however, its thermal conductivityis low. For improving the thermal conductivity, AgNWs and graphene with high thermal conductivity were added to silicone rubber nanocomposites.
    In the first part, chemical modification of graphene was by two different methods. The products were assigned to AA-RGO and AA-GNP, respectively. And then AA-RGO/SR, AA-GNP/SR, and unmodified GNP/SR nanocomposites were prepared by solution mixing method. Results indicate that the thermal conductivity of 10 phr AA-RGO/SR nanocomposites increase form 0.180 W/mK to 0.412 W/mK, which processes better thermal conduction than the other nanocomposites.
    In the second part, to further enhance thermal conductivity of AA-RGO/SR nanocomposites, AgNWs modified by thiophenol (mAgNWs) are added. The thermal conductivity of silicone rubber nanocomposites which contains 10 phr AA-RGO and 10 phr mAgNWs increases from 0.18W/mK to 1.289 W/mK, and the coefficient of thermal expansion (CTE) reduces from 310μm/m℃ to 155.5μm/m℃.

    摘要 I Abstract III 謝誌 V 目錄 VII 圖目錄 XII 表目錄 XXIII 第一章 緒論 1 第二章 基礎理論與文獻回顧 4 2.1 熱界面材料 4 2.1.1熱界面材料介紹 4 2.1.2熱界面材料熱傳導機制 13 2.1.3高分子複合材料熱傳導機制 17 2.2 矽橡膠(Silicone Rubber) 23 2.2.1 矽橡膠簡介 23 2.2.2 矽橡膠硬化機制 27 2.2.3 矽橡膠利用填充物提升熱傳導係數相關文獻 31 2.3奈米複合材料 35 2.3.1複合材料[48] 35 2.3.2 奈米材料 38 2.3.3奈米複合材料的熱力學穩定性[52] 41 2.3.4奈米粒子/矽橡膠複合材料文獻回顧 42 2.4石墨烯(Graphene) 52 2.4.1石墨烯介紹 52 2.4.2石墨烯的特性 54 2.4.3石墨烯製備方法 62 2.5 奈米石墨烯/矽橡膠複合材料之文獻回顧 74 2.6奈米石墨烯/銀/複合材料之文獻回顧 83 第三章 研究目的與內容 100 3.1研究目的 100 3.2研究內容與流程 102 第四章實驗方法 108 4.1實驗藥品 108 4.2實驗設備及儀器 114 4-3實驗流程 118 4.4實驗步驟 120 4.4.1利用Modified Hummers’ 法製備Graphene Oxide (GO) 120 4.4.2製備GNP (Grapene Nanoplatelet ) 121 4.4.3製備AA-GNP (Grapene Nanoplatelet grafted Acryl- amide ) 122 4.4.4製備AA-RGO (Reduced Graphene Oxide grafted Acrylamide ) 123 4.4.5 製備GNP/SR、AA-GNP/SR、AA-RGO/SR複合 材料 124 4.5 分析測試方法 128 4.5.1 結構分析 128 4.5.2 表面型態分析 132 4.5.3熱性質分析 136 第五章 結果與討論 139 5.1 石墨烯系材料鑑定與分析 139 5.1.1 X光電子光譜 (X-ray Photoelectron Spectroscopy, XPS) 分析 139 5.1.2 傅立葉轉換衰減全反射紅外線光譜儀 (ATR-FTIR) 146 5.1.3 熱重分析儀(Thermgravimetric Analyzer, TGA)分析 148 5.1.4 X光繞射光譜儀(X-ray diffraction, XRD)分析 151 5.1.5原子力電子顯微鏡(Atomic Force Microscope, AFM) 分析 155 5.2 石墨烯/矽橡膠奈米複合材料鑑定與分析 162 5.2.1 場發射掃描式電子顯微鏡( FE-SEM)分析 162 5.2.2熱傳導分析儀 (Thermoconductivity Analyzer)分析 165 5.2.3 熱機械分析儀( Thermomechanical analyzer , TMA) 分析 168 5.2.4 熱重分析儀(Thermgravimetric Analyzer, TGA)分析 170 5.3 奈米銀線材料鑑定與分析 172 5.3.1穿透式電子顯微鏡(Transmission Electron Micro- scope, TEM)分析 172 5.3.2 X光電子光譜 (X-ray Photoelectron Spectroscopy, XPS) 分析 173 5.3.3熱重分析儀(Thermgravimetric Analyzer, TGA)分析 174 5.4 石墨烯/奈米銀線/矽橡膠奈米複合材料鑑定與分析 175 5.4.1熱傳導分析儀 (Thermoconductivity Analyzer)分析 175 5.4.2 場發射掃描式電子顯微鏡( FE-SEM)分析 177 5.4.3 熱機械分析儀( Thermomechanical analyzer , TMA) 分析 178 5.4.4 熱重分析儀(Thermgravimetric Analyzer, TGA)分析 179 第六章 總結論 181 第七章 參考文獻 183

    [1] A. Tisserand, "Circuits for True Random Number Generation with On-Line Quality Monitoring," in Claude Shannon Institut Workshop on Coding and Cryptography, 2012.
    [2] F. Sarvar, D. C. Whalley, and P. P. Conway, "Thermal interface materials-A review of the state of the art," in Electronics Systemintegration Technology Conference, 2006. 1st, 2006, pp. 1292-1302.
    [3] R. Prasher, "Thermal interface materials: historical perspective, status, and future directions," Proceedings of the IEEE, vol. 94, pp. 1571-1586, 2006.
    [4] J. Hong, J. Lee, C. K. Hong, and S. E. Shim, "Improvement of thermal conductivity of poly (dimethyl siloxane) using silica-coated multi-walled carbon nanotube," Journal of Thermal Analysis and Calorimetry, vol. 101, pp. 297-302, 2010.
    [5] J. Hong, J. Lee, C. K. Hong, and S. E. Shim, "Effect of dispersion state of carbon nanotube on the thermal conductivity of poly (dimethyl siloxane) composites," Current Applied Physics, vol. 10, pp. 359-363, 2010.
    [6] A. K. Geim, K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, October 22, 2004.
    [7] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45(7), pp. 1558-1565., 2007.
    [8] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, pp. 385-388, 2008.
    [9] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
    [10] "Thermal grease", Wikipedia
    [11] W. Haller, et al. , "Adhesives," Ullmann's Encyclopedia of Industrial Chemistry (7th ed.),Wiley, pp. 58-59, 2007.
    [12] G. Becker, C. Lee, and Z. Lin, "Thermal conductivity in advanced chips: Emerging generation of thermal greases offers advantages," Advanced Packaging, vol. 14, p. 14, 2005.
    [13] K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, "High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks," Journal of Applied Physics, vol. 111, p. 104310, 2012.
    [14] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, et al., "Dimensional crossover of thermal transport in few-layer graphene," Nature materials, vol. 9, pp. 555-558, 2010.
    [15] "List of thermal conductivities", Wikipedia
    [16] U. Drofenik, G. Laimer, and J. W. Kolar, "Theoretical converter power density limits for forced convection cooling," in Proceedings of the International PCIM Europe 2005 Conference, 2005, pp. 608-619.
    [17] S. Ellsworth, "Applied Computer Cooling," 2012.
    [18] A. Dewan, P. Mahanta, K. S. Raju, and P. S. Kumar, "Review of passive heat transfer augmentation techniques," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 218, pp. 509-527, 2004.
    [19] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, "Review on thermal energy storage with phase change: materials, heat transfer analysis and applications," Applied thermal engineering, vol. 23, pp. 251-283, 2003.
    [20] R. L. Webb, et al. , "Low Melting Point thermal Interface Material," 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems May 30-June 01, pp. 671-676., 2002.
    [21] C. G. Macris, T. R. Sanderson, R. G. Ebel, and C. B. Leyerle, "Performance, reliability, and approaches using a low melt alloy as a thermal interface material," in Proceedings IMAPS, 2004.
    [22] 楊書榮,林國禎,趙玉麟, "熱相變材料簡介," 先進構裝技術聯盟季刊, 2003年,第十一期,第81- 87頁,.
    [23] D. Sorgo, "Thermal interface materials," Electronics Cooling, vol. 2, pp. 12-16, 1996.
    [24] R. S. Prasher, "Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials," Journal of Heat Transfer, vol. 123, pp. 969-975, 2001.
    [25] 寒士, "空間電子產品的熱設計," 今日電子, 第62-63頁,2002.
    [26] 王傳東, "彈性體熱界面材料的研究進展," 2010.
    [27] 邱國展, "熱介面材料開發概論," 工業材料雜誌, 第二一七期,第105-111頁,2005.
    [28] 張仲卿,侯順雄,張進寬,杜鳳棋, "熱傳遞," 高立圖書有限公司,臺北, 2003.
    [29] 黃至弘, "TIM 測量帄臺之精準度分析,碩士論文," 國立清華大學工程與系統科學研究所,新竹, 2005.
    [30] R. Mahajan, et al, "Thermal Interface Materials: A Brief Reviw of Design Characteristics and Materials," Electronics Cooling, vol. 10, 2004.
    [31] S. S. Tonapi et al "Thermal conductive material utilizing electrically conductive nanoparticles," United States Patent vol. 7550097.
    [32] J. C. Maxwell, "Electricity and magnetism," 1954.
    [33] W. Yu and S. Choi, "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model," Journal of Nanoparticle Research, vol. 5, pp. 167-171, 2003.
    [34] S. Cheng and R. Vachon, "The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures," International Journal of Heat and Mass Transfer, vol. 12, pp. 249-264, 1969.
    [35] S. Okamoto and H. Ishida, "A new theoretical equation for thermal conductivity of two‐phase systems," Journal of applied polymer science, vol. 72, pp. 1689-1697, 1999.
    [36] L. E. Nielsen, "Thermal conductivity of particulate‐filled polymers," Journal of applied polymer science, vol. 17, pp. 3819-3820, 1973.
    [37] H. Hiroshi and T. Minoru, "Equivalent inclusion method for steady state heat conduction in composites," International Journal of Engineering Science, vol. 24, pp. 1159-1172, 1986.
    [38] H. Zhou, S. Zhang, and M. Yang, "The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials," Composites science and technology, vol. 67, pp. 1035-1040, 2007.
    [39] " Silicone Solutions for LED Lighting," Dow Corning.
    [40] "LED封裝用材料的特性," 台灣區電機電子工業同業公會, 2010.
    [41] "Silicone rubber", Wikipedia.
    [42] F. Sarvar, D. C. Whalley, and P. P. Conway, "Thermal Interface Materials - A Review of the State of the Art " Electronics Systemintegration Technology,conference, 2006.
    [43] "Wacker silicone Intelligent Industry Solutions."
    [44] 馮聖玉, "有機矽高分子及應用," 化學工業出版社, 2008.
    [45] L. C. Sim, S. Ramanan, H. Ismail, K. Seetharamu, and T. Goh, "Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes," Thermochimica acta, vol. 430, pp. 155-165, 2005.
    [46] 賴炎暉,黃志青, "以表面改質之二氧化矽奈米粉體強化聚二醚酮基材," 國立中山大學材料科學研究所 碩士論文, 2006.
    [47] 馬振基,施文昌, "複合材料簡介," 化工專輯 0274, 1992.
    [48] 馬振基, "奈米材料科技原理與應用(第二版)," 全華圖書股份有限公司,台北市, 2012.
    [49] 奈米時代-實現與夢想, "中國輕工業出版社."
    [50] 張立德,牟季美, "奈米材料和奈米結構," 滄海書局,台中市, 2002.
    [51] 中國輕工業出版社, "奈米時代-實現與夢想."
    [52] 徐國財,張立德, "奈米複合材料," 五南圖書出版股份有限公司,台北市, 2004.
    [53] L. Gan, S. Shang, C. W. M. Yuen, S.-x. Jiang, and N. M. Luo, "Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties," Composites Part B: Engineering, vol. 69, pp. 237-242, 2015.
    [54] "The Official WebSite of the Nobel Prize."
    [55] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
    [56] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, Mar 2008.
    [57] M. Crommie, "A Phonon Floodgate in Monolayer Carbon: The first STM spectroscopy of graphene flakes yields new surprises 2008," Lawrence Berkeley National Laboratory.
    [58] 吳至彧, "利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究," 國立清華大學工程與系統科學系碩士論文, 2009.
    [59] C. N. Lau and A. A. Balandin, "Dimensional crossover of thermal transport in few-layer graphene," Nature Materials, vol. 9(7), 2010.
    [60] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 18 2008.
    [61] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature vol. 438, pp. 197-200, 2005.
    [62] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al., "Giant intrinsic carrier mobilities in graphene and its bilayer," Physical Review Letters, vol. 100, p. 016602, 2008.
    [63] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, " Graphene based materials: Past, present and future," Progress in Materials Science, vol. 56(8), pp. 1178-1271, 2011.
    [64] W. A. De Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
    [65] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir–Blodgett films," Nature nanotechnology, vol. 3, pp. 538-542, 2008.
    [66] L. G. De Arco, Y. Zhang, A. Kumar, and C. Zhou, "Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition," Nanotechnology, IEEE Transactions on, vol. 8, pp. 135-138, 2009.
    [67] S. De, P. J. King, M. Lotya, A. O'Neill, E. M. Doherty, Y. Hernandez, et al., "Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant‐Stabilized, Oxide‐Free Graphene Dispersions," Small, vol. 6, pp. 458-464, 2010.
    [68] M. Zhang, R.R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, R. Brukh, P.L. Chiu, T. Zhou, Z.F. Liu, E. Garfunkel, and H.X. He, " Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. ," Small, vol. 6(10), pp. 1100-1107, 2010.
    [69] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt Macromolecular Rapid Communications, "Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide.," vol. 30(4-5), pp. 316-327, 2009.
    [70] D. R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff Chemical Society, "The chemistry of graphene oxide," Reviews, vol. 39(1), 2010.
    [71] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt " Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide," Macromolecular Rapid Communications,, vol. 30(4-5), pp. 316-327, 2009.
    [72] V. C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner, "High-throughput solution processing of large-scale graphene. ," Nature Nanotechnology, vol. 4(1), pp. 25-29., 2009.
    [73] H. A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, " Evaluation of solution-processed reduced graphene oxide films as transparent conductors," Acs Nano, vol. 2(3), pp. 463-470, 2008.
    [74] B. Pradhan and S. K. Srivastava, "Synergistic effect of three‐dimensional multi‐walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high‐performance silicone rubber," Polymer International, 2013.
    [75] H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, et al., "Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene," Polymer, vol. 53, pp. 3378-3385, 2012.
    [76] V. Goyal and A. A. Balandin, "Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials," Applied Physics Letters, vol. 100, p. 073113, 2012.
    [77] H. N. Tien, T. V. Cuong, B.-S. Kong, J. S. Chung, E. J. Kim, and S. H. Hur, "Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers," Journal of Materials Chemistry, vol. 22, pp. 8649-8653, 2012.
    [78] H.-W. Tien, S.-T. Hsiao, W.-H. Liao, Y.-H. Yu, F.-C. Lin, Y.-S. Wang, et al., "Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive," Carbon, vol. 58, pp. 198-207, 2013.
    [79] L. He and S.-C. Tjong, "Electrical behavior and positive temperature coefficient effect of graphene/polyvinylidene fluoride composites containing silver nanowires," Nanoscale research letters, vol. 9, pp. 1-8, 2014.
    [80] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, et al., "One‐dimensional nanostructures: synthesis, characterization, and applications," Advanced materials, vol. 15, pp. 353-389, 2003.
    [81] Z. Li, C. Lu, Z. Xia, Y. Zhou, and Z. Luo, "X-ray diffraction patterns of graphite and turbostratic carbon," Carbon, vol. 45, pp. 1686-1695, 2007.
    [82] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, et al., "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy," Carbon, vol. 47, pp. 145-152, 2009.
    [83] Z. Jiang, E. Henriksen, L. Tung, Y.-J. Wang, M. Schwartz, M. Han, et al., "Infrared spectroscopy of Landau levels of graphene," Physical review letters, vol. 98, p. 197403, 2007.
    [84] J.-M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, "Field emission of individual carbon nanotubes in the scanning electron microscope," Physical review letters, vol. 89, p. 197602, 2002.
    [85] P. Nemes-Incze, Z. Osváth, K. Kamarás, and L. Biró, "Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy," Carbon, vol. 46, pp. 1435-1442, 2008.
    [86] 奈米光電磁材料技術研發中心,國立台北科技大學, "熱傳導分析儀介紹."
    [87] Y. Khanna, "Evaluation of thermal history of polymeric films and fibers using DSC/TMA/DMA techniques," Journal of applied polymer science, vol. 40, pp. 569-579, 1990.
    [88] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009.
    [89] N. Yang and C. G. Zoski, "Polymer films on electrodes: investigation of ion transport at poly (3, 4-ethylenedioxythiophene) films by scanning electrochemical microscopy," Langmuir, vol. 22, pp. 10338-10347, 2006.
    [90] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)," Journal of Materials Chemistry, vol. 16, pp. 155-158, 2006.
    [91] R. Graupner, J. Abraham, A. Vencelová, T. Seyller, F. Hennrich, M. M. Kappes, et al., "Doping of single-walled carbon nanotube bundles by Brønsted acids," Physical Chemistry Chemical Physics, vol. 5, pp. 5472-5476, 2003.
    [92] A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, et al., "Optical sensing of biomolecules using microring resonators," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 148-155, 2006.
    [93] Y. Huang, M. Zeng, J. Ren, J. Wang, L. Fan, and Q. Xu, "Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 401, pp. 97-106, 2012.
    [94] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, et al., "Nano-graphene oxide for cellular imaging and drug delivery," Nano research, vol. 1, pp. 203-212, 2008.
    [95] T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, "Chemical functionalization of graphene and its applications," Progress in Materials Science, vol. 57, pp. 1061-1105, 2012.
    [96] J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, et al., "Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly," Langmuir, vol. 26, pp. 15830-15836, 2010.
    [97] S. Bose, T. Kuila, M. E. Uddin, N. H. Kim, A. K. Lau, and J. H. Lee, "In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites," Polymer, vol. 51, pp. 5921-5928, 2010.
    [98] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, and L. Niu, "Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine," Langmuir, vol. 25, pp. 12030-12033, 2009.
    [99] W.-H. Liao, S.-Y. Yang, J.-Y. Wang, H.-W. Tien, S.-T. Hsiao, Y.-S. Wang, et al., "Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization," ACS applied materials & interfaces, vol. 5, pp. 869-877, 2013.
    [100] P. Cui, J. Lee, E. Hwang, and H. Lee, "One-pot reduction of graphene oxide at subzero temperatures," Chemical Communications, vol. 47, pp. 12370-12372, 2011.
    [101] V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, and A. Buasri, "Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods," Advances in Materials Science and Engineering, vol. 2013, 2013.
    [102] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
    [103] I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, "Reduced graphene oxide by chemical graphitization," Nature communications, vol. 1, p. 73, 2010.
    [104] W. Chen and L. Yan, "In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures," Nanoscale, vol. 3, pp. 3132-3137, 2011.
    [105] S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of graphite-and graphene oxide," Carbon, vol. 49, pp. 3019-3023, 2011.
    [106] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, et al., "Facile synthesis and characterization of graphene nanosheets," The Journal of Physical Chemistry C, vol. 112, pp. 8192-8195, 2008.
    [107] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, et al., "Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets," Chemistry of Materials, vol. 21, pp. 3514-3520, 2009.
    [108] S. Zhu, J. Li, Y. Chen, Z. Chen, C. Chen, Y. Li, et al., "Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release," Journal of Nanoparticle Research, vol. 14, pp. 1-11, 2012.
    [109] J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, and C.-C. M. Ma, "Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization," Journal of Materials Chemistry, vol. 21, pp. 13569-13575, 2011.
    [110] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, et al., "Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites," Advanced Functional Materials, vol. 19, pp. 2297-2302, 2009.
    [111] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
    [112] R. Maxwella, R. Cohenourb, W. Sungb, and D. Solyomb, "The effects of g-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber," Polym. Degrad. Stab, vol. 80, p. 443, 2003.
    [113] J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," Journal of Micromechanics and Microengineering, vol. 7, p. 145, 1997.
    [114] X. Luo and P. T. Mather, "Preparation and characterization of shape memory elastomeric composites," Macromolecules, vol. 42, pp. 7251-7253, 2009.
    [115] D. Chung, "Thermal interface materials," Journal of Materials Engineering and Performance, vol. 10, pp. 56-59, 2001.
    [116] X. Dang, X. Bai, and Y. Zhang, "Thermal degradation behavior of low‐halogen flame retardant PC/PPFBS/PDMS," Journal of Applied Polymer Science, vol. 119, pp. 2730-2736, 2011.
    [117] L. C. Sim, S. Ramanan, H. Ismail, K. Seetharamu, and T. Goh, "Thermal characterization of Al 2 O 3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes," Thermochimica acta, vol. 430, pp. 155-165, 2005.
    [118] M. Kawasaki, T. Sato, and T. Yoshimoto, "Controlled layering of two-dimensional J-aggregate of anionic cyanine dye on self-assembled cysteamine monolayer on Au (111)," Langmuir, vol. 16, pp. 5409-5417, 2000.
    [119] S. D. Techane, L. J. Gamble, and D. G. Castner, "X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols," Biointerphases, vol. 6, pp. 98-104, 2011.
    [120] D. A. Hutt, E. Cooper, and G. J. Leggett, "Structure and mechanism of photooxidation of self-assembled monolayers of alkylthiols on silver studied by XPS and static SIMS," The Journal of Physical Chemistry B, vol. 102, pp. 174-184, 1998.
    [121] M. Scaini, G. Bancroft, J. Lorimer, and L. Maddox, "The interaction of aqueous silver species with sulphur-containing minerals as studied by XPS, AES, SEM, and electrochemistry," Geochimica et cosmochimica acta, vol. 59, pp. 2733-2747, 1995.
    [122] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, "Thermal expansion of graphene composites," Macromolecules, vol. 42, pp. 5251-5255, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE