研究生: |
陳奕翔 Chen, Yi Hsiang |
---|---|
論文名稱: |
深藍色螢光發光體及電子傳輸材料之設計合成及其在有機電激發光元件及濕式製程之應用 Design and Synthesis of Deep Blue Fluorescence Emitters and Electron Transporting Materials for Deep Blue OLED and Their Application in Solution Process |
指導教授: |
鄭建鴻
Cheng, Chien Hong |
口試委員: |
廖文峯
Liaw, Wen-Feng 陳秋炳 Cheng, Cheu-Pyeng 周鶴修 Chou,Ho Hsiu 林皓武 Lin, Hao Wu |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 376 |
中文關鍵詞: | 有機電激發光 、藍色螢光 、延遲螢光 、客體材料 、電子傳輸材料 |
外文關鍵詞: | blue fluorescence, TTA, Delay fluorescence, dopant materials, electron transporting materials |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們設計合成出含有不對稱二苯乙烯基的高效率之咔唑、苯胺衍生物PCzDFA、PCzNA、PCzDPA與PCzDMA做為藍色螢光元件之客體材料,透過引入不對稱的結構,並改變基團的取代基,達到微調光色的效果,此四個藍色客發光體材料在甲苯溶劑下放光皆為深藍光,另外分子的對稱性被破壞,使其熱穩定性及溶解度增加,擁有相當高的熱裂解溫度(Td = 417~460 °C),其中PCzDFA、PCzNA、PCzDPA更具有超過100 °C的高玻璃轉化溫度。此四個藍色客發光體材料,其HOMO能階介於5.23~5.55 eV,LUMO能階則介於2.48~2.70 eV,以DMPPP做為主體材料,摻雜PCzNA和PCzDPA的薄膜固態量子效率超過90 %,其餘亦在85 %以上,說明主體材料DMPPP與客體材料間擁有良好的Förster能量轉移,四個客體材料搭配最佳化元件結構,均有不錯的最大外部量子效率,尤以DMPPP摻雜PCzDPA作為發光層之2E元件,最大外部量子效率高達9.7 %,最大發光效率與發光功率效率分別為12.4 cd/A與6.1 lm/W,最大亮度表現為64857 cd/m2,CIE色度座標為(0.14, 0.15),而使用PCzNA作為客體材料於相同結構下,不僅光色更加深藍,CIE色度座標為(0.14, 0.12),其最大外部量子效率亦可達9.4 %,最大發光效率與發光功率效率分別為10.3 cd/A與4.9 lm/W,最大亮度則為57943 cd/m2,隨著亮度提升,元件的EQE和發光效率並未出現明顯滾降(roll-off)的現象。在元件壽命方面,以m-PPT作為主體材料搭配本章節的客體材料,以最佳化的元件結構進行壽命測試,在2000 cd/m2的亮度下,元件2J、2K、2L及2M之T50分別為51、91、139及148 小時, 壽命不佳的原因推測是這系列材料皆不具可逆的氧化電位,表示分子在激發態時可能處於不穩定的狀態,造成元件操作壽命不高。在濕式元件製程方面,以PO-C6為主體材料,搭配PCzDPA之元件2X,其最大外部量子效率為4.7 %,最大發光效率為8.4 cd/A,最大發光功率效率為6.0 lm/W,最大亮度為14769 cd/m2,CIE座標為(0.15, 0.24)
其次,我們根據第一章節的結構進行改良,將二苯乙烯基及芘做結合,合成出PCzSP、NASP、DFASP、DPASP、DMASP與DOASP六個藍色螢光客體材料,芘基團除了有高量子效率外,本身剛性的結構也能增加分子的熱穩定性,且芘也被證實能在溶液態中接收三重態激子,再經過上轉換(Up Conversion)形成單重態激子,而釋放出生命期較長的延遲螢光。此系列化合物在溶液中放光皆為藍光,熱穩定性方面,都擁有相當高的熱裂解溫度(Td = 410~452 °C),HOMO能階介於5.16~5.56 eV,LUMO能階則介於2.37~2.62 eV,DMPPP做為主體材料,摻雜2 %的客體材料的固態量子效率,除了PCzSP只有64 %以外,其餘都在85 %以上,其中DPASP更高達 99 %。利用上一章節的最佳化元件結構搭配此系列客體材料,同樣有不錯的最大外部量子效率,其中以DFASP、DPASP做為客體材料的元件3I、3J,最大外部量子效率分別高達10.9、10.7 %,最大發光效率為11.9、13.0 cd/A發光功率效率為6.1、8.9 lm/W,最大亮度58963、68213 cd/m2,CIE色度座標為(0.14, 0.12)、(0.14, 0.14),是非常高效率又深藍光的元件,同樣隨著亮度提升到10000 cd/m2左右,元件的EQE和發光效率都維持在最大值的九成以上,顯示此類材料具有優秀的壽命潛力,利用暫態電激發光實驗,證明元件最大外部量子效率超過螢光元件理論值5 %是來自於延遲螢光。另外藉由測量客體材料以及客體材料摻雜在主體材料的暫態光激發光譜,也排除了延遲螢光是來自於TADF(thermally activated delayed fluorescence)。我們也以CBP做為主體材料,量測元件的暫態電激發光譜,初步證明CBP無法產生延遲螢光,也證明客體材料能夠在摻雜的環境下產生三重態-三重態焠熄機制(Triplet-Triplet Annihilation),並形成額外的單重態激子來放出延遲螢光。其中以摻雜5 % DPASP的元件3O,可達到12 %的最大外部量子效率,比較近年來的文獻,是非常突出的結果。最後壽命測試結果,在500 cd/m2的亮度下,元件3Q~3V之T50分別為1551、3947、2248、4634、9109及3557 小時,結果明顯高於前一章節的材料,推測是此系列材料除PCzSP外,均有可逆的氧化電位。
最後,我們合成出一系列含吡啶/蒽的電子傳輸材料,p-TPyAP、m-TPyAP、p-TPyAN、及m-TPyAN,經過理論計算,材料的HOMO及LUMO電子雲都集中在中間的蒽(anthracene)上,所以四種材料的HOMO、LUMO及光物理性質都沒有太大的差異,熱穩定性方面,都擁有相當高的熱裂解溫度(Td = 418~457 °C),應用在紅色及綠色磷光元件上,均得到不錯的效果。跟傳統常用的Alq3相比,此系列電子傳輸材料應用在元件上均有較高的電流密度及較低的驅動電壓,應用在藍色螢光元件上也有相同的效果,最後利用表現最好的m-TPyAN製作雙發光層的元件,最大外部量子效率可達11.5 %,高於單發光層元件的10.8 %。
In the thesis, high quantum effieiency fluorescent dopants based on stilbene derivatives, PCzDFA、PCzNA、PCzDPA and PCzDMA have been synthesized. In order to increase the solubility and fine tune the emission color, different carbazole or amine groups are incorporated into stilbene structure, all these materials have deep blue emission in dilute toluene solution, and these compounds also exhibit good thermal stability with decomposition temperature in the range of 417~460 °C and glass transition temperature above 100 °C. The HOMO and LUMO levels of these materials are 5.23~5.55 eV and 2.48~2.70 eV, respectively. Moreover, stilbene derivatives doped in DMPPP film show extremely high Q.Y. which indicate that energy transfer is highly efficient.
The devices using DMPPP doped with dopants as emission layer (EML) with optimized device structure show extraordinary external quantum efficiency (E.Q.E.). The PCzDPA-doped device shows an E.Q.E. of 9.7 %, the current efficiency (C.E.) of 12.4 cd/A, and the power efficiency (P.E.) of 6.1 lm/W with the CIE coordinates of (0.14, 0.15). The PCzNA-doped device has deeper blue color of CIE coordinates of (0.14, 0.12), and shows an E.Q.E. of 9.4 %, the C.E. of 10.3 cd/A, and the P.E. of 4.9 lm/W.
For operation lifetime, the optimized device hosted by m-PPT was fabricated, and using PCzDFA、PCzNA、PCzDPA and PCzDMA as the dopant, the operational lifetime of devices 2J、2K、2L and 2M were 51、91、139 and 148 hours under a luminance of 2000 cd/m2. The poor lifetime may due to the irreversible oxidation. For solution process device, the device 2X using PO-C6 and PCzDPA as host and dopant, respectively, can achieve an E.Q.E. of 4.7 %, the C.E. of 8.4 cd/A, and the P.E. of 6.0 lm/W with the CIE coordinates of (0.15, 0.24).
We have synthesized six Styrylpyrene-based derivatives PCzSP、NASP、DFASP、DPASP、DMASP and DOASP as blue fluorescent dopnat materials. Pyrene group, which shows high quantum yield and good thermal property, was proved that can accept triplet exciton then generate additional singlet exction via up-conversion. The photoluminescence of these materials in toluene solution were in blue region. these compounds also exhibit good thermal stability with decomposition temperature in the range of 410~452 °C and glass transition temperature nearly 100 °C. The HOMO and LUMO levels of these materials are 5.16~5.56 eV and 2.37~2.62 eV, their absolute fluorescent quantum yields were measured, DFASP (ΦPL = 0.94) and DPASP (ΦPL = 0.99) exhibit higher ΦPL as compared to PCzSP (ΦPL = 0.64). The devices using DMPPP doped with dopants as EML with optimized device structure show extremely high E.Q.E., the DFASP and DPASP-doped device shows an E.Q.E. of 10.9 and 10.7 %, the C.E. of 11.9 and 13.0 cd/A, the P.E. of 6.1 and 8.9 lm/W with the CIE coordinates of (0.14, 0.14) and (0.14, 0.12), respectively. the devices hosted by CBP was fabricated. The transient EL spectrum of device 3M~3N demonstrated that CBP can not generate TTA, and DPASP doped in CBP show large microsecond-scale delayed fluorescence. The transient PL of dopant and doped-film also eliminate the delay fluorescence which come from TADF(thermally activated delayed fluorescence). The E.Q.E. reached the limit efficiency of fluorescent OLEDs. These results are among of the best performance of deep blue fluorescent OLEDs. For operation lifetime, devices 3Q~3V were 1551、3947、2248、4634、9109 and 3557 hours under a luminance of 500 cd/m2, the better results may due to the reversible oxidation state, except PCzSP.
Finally, We have synthesized a series of pyridine-anthracene bsed derivatives p-TPyAP、m-TPyAP、p-TPyAN、and m-TPyAN, the DFT calculation show that the electron density distribution of HOMO and LUMO are both on the anthracene group, so there is not much difference of HOMO and LUMO energy level between these four materials. these compounds also exhibit good thermal stability with decomposition temperature in the range of 418~457 °C. The red and green phosphorescence device using these materials show the pretty good results, with lower turn-on voltage and higher current density compared to commercial Alq3. And using the best performed ETL, m-TPyAN to fabricated the double emission layer device, show the maximum E.Q.E of 11.5 %, higher than the single emission layer device with E.Q.E of 10.8 %.
[1] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, M. E.
Thompson, IEEE Trans. Electron Device , 1997, 44, 11888.
[2] P. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[3] C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett., 1987, 51, 913
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D.
Mackay,R.H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 539.
[5] 林敬二, 林宗義 譯,儀器分析第四版,1994。
[6] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 2001, 90, 5048.
[7] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. ,2001, 79, 2082.
[8] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S.R. Forrest, Nature ,1998, 395, 151.
[9] M. E. Thompson, A. Shoustikov, Y. You, S. Sibley, M. A. Baldo, V. Koslov, E. P. Burrows, S. R. Forrest, MRS Abstract, G2.4, Spring Meeting, 1998.
[10] M. A. Baldo, D. F. O. Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[11] D. F. O. Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 74, 442.
[12] S. A. VanSlyke, C. W. Tang, L. C. Roberts, US 4, 720, 432, 1988.
[13] S. A. VanSlyke, C. W. Tang, US 4, 539, 507, 1985.
[14] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
[15] T. Forster, Disc. Faraday Soc. 1959, 27, 7.
[16] D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
[17] M. A. O. Baldo, D. F. Brien, M. E. Thomspon, S. R. Forrest, Phys. Rev. B. 1999, 60, 20.
[18] Text book of Basic Optics.
[19] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, Opt. Lett. 1997, 22, 396.
[20] T. Tsutsui, S. Satio, in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordreccht 1993, 123.
[21] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, R. H. Young, J. Appl.
Phys. 2003, 93, 1108.
[22] S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W.
Tang, S. H. Chen, Adv. Funct. Mater. 2006, 16, 1481.
1. Y. J. Tung, T. Ngo, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato, H. Ito, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 2004, 35, 48.
2. R.C. Chiechi, R.J. Tseng, F. Marchioni, Y. Yang, F. Wudl, Adv. Mater., 2006, 18, 325.
3. C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
4. Y. J. Tung, T. Nago, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato, H. Ito, SID 2004 Technical Digest., 2004, 35, 48.
5. Y. Kijima, N. Asai, S. I. Tamura, Jpn. J. Appl. Phys., 1999, 38, 5274.
6. M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater., 2005, 17, 2497.
7. J. Shi, C. W. Tang, Appl. Phys. Lett. 2002, 80, 3201.
8. M. T. Li, W. L. Li, Solid-State Electro. 2008, 52, 121.
9. K. Suzuki, A. Seno, H. Tanabe, K. Ueno, Synth. Met. 2004, 143, 89.
10. M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, C. H. Chen, Appl. Phys. Lett. 2004, 85, 3301.
11. T. H. Zheng, C. H. Choy, J. Phys. D: Appl. Phys. 2008, 41, 1.
12. N. C. Seong, Y. M. Jeon, T. H. Lim, J. W. Kim, C. W. Lee, E. J. Lee, J. G. Jang, H. J. Jang, J. Y. Lee, M. S. Gong, Synth. Met. 2007, 157, 421.
13. F. He, L. L. Tian, W. J. Xie, M. Li, Q. Gao, M. Hanif, Y. F. Zhang, G. Cheng, B. Yang, Y. G. Ma, S.Y. Liu, J. C. Shen, J. Phys. Chem. C. 2008, 112, 12024.
14. J. H. Lee, T. C. Lin, C. C. Liao, Proc. of SPIE. 2005, 5740, 138.
15. Y. H. Ho, T. C. Lin, C. F. Wu, J. H. Lee, Proc. of SPIE. 2006, 6333, 633303.
16. M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater. 2005, 17, 2493.
17. C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett. 1995, 67, 3853.
18. N. Lemaître, J. Lavigne, P. Raimond, T. Maindron, C. Denis, P. Maisse, B. Geffroy, Proc. of SPIE. 2005, 5937, 593723.
19. S. J. Lee, J. S. Park, K. J. Yoon, Y. I. Kim, S. H. Jin, S. K. Kang, Y. S. Gal, S. Kang, J. Y. Lee, J. W. Kang, S. H. Lee, H. D. Park, J. J. Kim, Adv. Funct. Mater. 2008, 18, 1.
20. K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S.Yook, J. Y. Lee, Adv. Funct. Mater. 2010, 20, 1345.
21. H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y.H. Chen, C. H. Cheng, Adv. Mater. 2005, 17, 2493.
22. (a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539. (b) B. Chen, J. Ding, L. Wang, X. Jing, and F. Wong, Chem. Comm., 2012, DOI: 10.1039/c2cc34712a. (c) X. H. Zhu, J. B. Peng, Y. Caoa, J. Roncali, Chem. Soc. Rev. 2011, 40, 3509.
23. J. D. Yu, S. R. Tseng, H. F. Meng, F. W. Yen, I. F. Lin, S. F. Horng, Org. electron. 2009, 10, 1610.
24. S. Xue, L. Yao, F. Shen, C. Gu, H. Wu, Y. Ma, Adv. Funct. Mater. 2012, 22, 1092.
25. I. Cho, S. H. Kim, J. H. Kim, S. Park, S. Y. Park, J. Mater. Chem. 2012, 22, 123.
26. H. Huang, Q. Fu, S. Zhuang, G. Mu, L. Wang, J. Chen, D. Ma, C. Yang, Org. Electon. 2011, 12, 1716.
27. M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, C. Yang, J. Phys. Chem. C. 2011, 115, 17965.
28. M. G. Ren, H. J. Guo, F. Qi, Q. H. Song, Org. Biomol. Chem. 2011, 9, 691s3.
29. Y.-K. Kim, J. W. Kim, and Y. Park, Appl. Phys. Lett., 2009, 94, 063305.
30. T. Reichert, T. P. I. Saragi, J. Salbeck, RSC Adv., 2012, 2, 7388.
31. Y. Lee, J. Kim, S. Kwon, C. K. Min, Y. Yi, J.W. Kim, B. Koo, M.P. Hong, Org. Electron., 2008, 9, 407.
32. K. Brunner, A. Dijken, H. Börner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc. 2004, 126, 6035.
1. P. W. Atkins, Molecular Quantum Mechanics, Oxford University Press, 1983.
2. Z. H. Kafafi, Ed. Organic Electroluminescence, Tailor & Francis Group, LLC, 2005.
3. D. Y. Kondakov, J. Appl. Phys. 2007, 102, 114504.
4. C. A. Parker, C. G. Hatchard, Proc. Chem. Soc., 1962, 147.
5. C. A. Parker, C. G. Hatchard, Trans. Faraday. Soc., 1961, 57, 1894.
6. R. G. Kepler, J. C. Caris, P. Avakian, E. Abramson, Phys. Rev. Letters, 1963, 10, 400.
7. C. A. Parker, Proc. R. Soc. Lond. A, 1963, 276, 125.
8. Y. Nichikawa, K. Hiroaki, Y. Onoue, K. Nishikawa, Y. Yoshitake, T. Shigematsu, Bunseki Kagaku, 1983, E115, 32
9. B. Valeur, Molecular Fluorescence, Wiley-VCH, Weinheim 2002, 41.
10. Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706.
11. W. Zhao, F. N. Castellano, J. Phys. Chem. A, 2006, 110, 11440.
12. Y. Luo, H. Aizi, Adv. Funct. Mater. 2010, 20, 1285.
13. D. Kasemann, R. Brückner, H. Fröb, K. Leo, Phys. Rev. B, 2011,
84, 115208.
14. D. Yokoyama, Y. Park, B. Kim, S. Kim, Y.-J. Pu, J. Kido, J. Park,
Appl. Phys. Lett., 2011, 99, 123303.
15. B. Kim, Y. Park, J. Lee, D. Yokoyama, J. H. Lee, J. Kido and J.
Park, J Mater Chem C., 2013 ,1, 432.
16. H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru, H. Fujikake, Org. Electron., 2012, 13, 1197.
17. C.-J. Chiang, A. Kimyonok, M. K. Etherington, G. C. Griffiths, V. Jankus, F. Turksoy, A. P. Monkman, Adv. Funct. Mater., 2013, 23, 739.
18. T. Suzuki, Y. Nonaka, T. Watabe, H. Nakashima, S. Seo, S.
Shitagaki, S. Yamazaki, Jpn. J. Appl. Phys., 2014, 53, 052102.
19. J. Y. Hu, Y.J. Pu, F. Satoh, S. Kawata , H. Katagiri, H. Sasabe , J.
Kido, Adv. Funct. Mater., 2014, 24, 2064.
20. P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y. Yen, I. C. Chen, C. H. Cheng, Chem. Comm., 2014, 50, 6869-6871.
1. K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi, J. Am. Chem. Soc. 1996, 118, 11974.
2. H. Antoniadis, M. A. Abkowitz, B. R. Hsieh, Appl. Phys. Lett. 1994, 65, 2030.
3. J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Appl. Phys. Lett., 2008, 93, 123306.
4. Organic Light Emitting Materials and Devices XIII, edited by F. So, C. Adachi, Proc. of SPIE Vol. 7415, 74150B · © 2009 SPIE · CCC code: 0277-786X/09/$18 · doi: 10.1117/12.826688.
5. T. Yasuda, Y. Yamaguchi, De-C. Zou, T. Tsutsui, Jpn. J. Appl. Phys., 2002, 41, 5626.
6. Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev., 2011, 40, 2943.
7. W.-Y. Hung, T.-H. Ke, Y.-T. Lin, C.-C. Wu, T.-H. Hung, T.-C. Chao, K.-T. Wong, C.-I. Wu, Appl. Phys. Lett., 2006, 88, 064102.
8. M. E. Kondakova, T. D. Pawlik, R. H. Young, D. J. Giesen, D. Y. Kondakov, C. T. Brown, J. C. Deaton, J. R. Lenhard, K. P. Klubek, J. Appl. Phys., 2008, 104, 094501.
9. M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao, K.-T. Wong, C.-I. Wu, Adv. Mater. 2006, 18, 1216.
10. H.-I. Baek, C. Lee, J. Appl. Phys., 2008, 103, 054510.
11. (a) M. A. Baldo, S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 10958. (b) H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 1999, 11, 605. (c) K. A. Higginson, X.-M. Zhang, F. Papadimitrakopoulos, Chem. Mater., 1998, 10, 1017.
12. D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido, Chem. Lett., 2007, 36, 262.
13. N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue, F. So, ACS Appl. Mater. Interfaces, 2009, 1, 1169.
14. S.-J. Su, Y. Takahashi, T. Chiba, T. Takeda, J. Kido, Adv. funct. Mater., 2009, 19, 1260.
15. L. Xiao, S.-J. Su, Y. Agata, H. Lan, J. Kido, Adv. Mater., 2009, 21, 1271.
16. J.-W. Kang, D.-S. Lee, H.-D. Park, Y.-S. Park, J. W. Kim, W.-I. Jeong, K.-M. Yoo, K. Go, S.-H. Kim, J.-J. Kim, J. Mater. Chem., 2007, 17, 3714.
17. S. Kwon, K.-R. Wee, A.-L. Kim, S. O. Kang, J. Phys. Chem. Lett., 2010, 1, 295.
18. H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y. J. Pu, K. I. Nakayama, M. Yokoyama, J. Kido, Adv. funct. Mater., 2011, 21, 336.
19. D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, J. Kido, Adv. funct. Mater., 2011, 21, 1375.
20. H. Sasabe, H. Nakanishi, Y. Watanabe, S. Yano, M. Hirasawa, Y. J. Pu, J. Kido, Adv. Funct. Mater., 2013, 23, 5550.
21. Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, Y. Qiu, Adv. Funct. Mater., 2011, 21, 1881.
22. [16] Murgatro.Pn, J. Phys. D-Appl. Phys. 1970, 3, 151.
23. [17] T. Ogawa, D. C. Cho, K. Kaneko, T. Mori, T. Mizutani, Thin Solid Films 2003, 438, 171.