簡易檢索 / 詳目顯示

研究生: 范嘉偉
Chia-Wei Fan
論文名稱: 無鉛/錫鉛銲點之金屬間化合物成長機制及潛變特性
Growth Mechanism of Intermetallic Compound and Creep Behavior of Lead-free/Lead-containing Solder Joints
指導教授: 葉銘泉博士
Dr. Ming-Chuen Yip
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 173
中文關鍵詞: 金屬間化合物擴散係數剪力推球強度破壞模式穩態潛變率
外文關鍵詞: intermetallic compound, diffusion coefficient, ball shear strength, failure mode, steady-state creep rate
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的研究範圍著重在IMC實驗及潛變實驗。IMC實驗主要為探討63Sn-37Pb、Sn-3.5Ag和Sn-4Ag-0.5Cu三種錫球迴焊至Au/Ni/Cu表面處理的銲墊後,銲點界面IMC層的成長狀況。除了將量測銲點經等溫時效作用後界面IMC層的成長厚度外,也將對銲點的剪力強度進行測試。藉由IMC的厚度量測來探討IMC的成長機制、擴散係數以及生成時所需克服的致動能,而銲點經剪力推球測試的結果則可做為評估銲點強度的參考,並再由銲點破壞模式分析更進一步了解銲點的破壞機制,最後針對IMC、剪力強度和破壞模式三者間的關係做深入探討。
    無鉛銲點的靜態與潛變實驗主要探討Sn-3.5Ag及Sn-4Ag-0.5Cu二種銲點的靜態行為及潛變特性。靜態實驗包括比較銲點在25℃、75℃、125℃、150℃四個溫度下的靜態強度,並探討可能的變形機制,最後將負載及位移再換算成應力與應變,且藉由曲線嵌合得到近似的數值模型以便做為將來評估銲點強度的基準。潛變實驗則藉由靜態實驗求得的靜態強度做為選取應力等級時的參考,也是在25℃、75℃、125℃、150℃四個溫度下進行。潛變實驗的目的在於探討無鉛銲點在高溫時的塑性變形行為,並由實驗求得的應力指數及致動能來輔助了解銲點的潛變機制。使用的潛變模型共包括Arrhenius Power law、Dorn方程式及雙曲線正弦應力函數。


    目錄 摘要…...………………………………………………………...………...I 目錄………………………………………………………...………........II 表目錄………………………………………………………...………...IV 圖目錄………………………………………………..............................VI 符號表………………………………………………..............................XI 一. 導論……………………..………………………..…………….........1 1.1電子構裝…………………………………………..……….….......1 1.2 印刷電路板組裝---BGA構裝技術…………………..………........3 1.3 綠色環保構裝技術­--無鉛銲料……………………..….................6 二. 研究動機…..…………………………………………………...........9 三. 文獻回顧……………………………………………………..…….11 3.1電解電鍍Ni/Au與無電鍍Ni/Au....……………………………….11 3.2 IMC對銲料之影響…………………………………………….….14 3.2.1 Sn-Pb銲料……………………………………………….....…14 3.2.2無鉛銲料..…..…………………………………………..……..16 3.3 IMC對UBM之影響………………………………………..……..21 3.4 IMC與尺寸效應...………………………………………………...24 3.5銲料的機械性質…………………………………………………...25 3.6銲料的潛變特性…………………………………………………...30 3.7銲料塊材與銲點之差異………..………………………………….34 四. 理論基礎……………………………………………………..…….36 4.1擴散理論及IMC成長….…………………………………..……...36 4.2潛變………………..………………………………………..……...39 4.3擴散與潛變………………..……………………………………….43 五. 研究方法……………………………………………………..…….47 5.1實驗設備……………………………………………………..…….47 5.2試片組成……………………………………………………..…….51 5.3 IMC實驗方法……………………………………………...……...52 5.3.1 IMC試片製作……………………………….………..….…...52 5.3.2 IMC成長實驗及剪力推球測試……………...………………53 5.4靜態與潛變實驗方法…………………………………..…..……...54 5.4.1潛變試片製作.………………………………………..….…...54 5.4.2潛變實驗……..……………….………………………..……...54 5.5金相觀察………………………………………..…………..……...55 六. 初步成果……………………………………………………..…….58 6.1 IMC實驗…………………………………………………..……...58 6.1.1 IMC成長機制…………………………………………..…….59 6.1.2銲點剪力強度與破壞機制…..…………..................................69 6.1.3三種銲點強度的比較及負載-位移曲線分析……..….……...77 6.2無鉛銲點靜態與潛變實驗…………..……………………..……...79 6.2.1靜態實驗…….…………………………………………..…….80 6.2.2潛變實驗……………………..…………..................................88 6.2.3 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點潛變機制…….…..…..……..97 6.2.3銲料塊材與銲點的差異………………….….…..…..………100 七. 結論………..………………………………………………..…….102 7.1 IMC實驗…………………………………………………..…...102 7.2靜態與潛變實驗…………………………………………..……...103 八. 參考文獻…………..…………………………………………..….104 表目錄 表1.1日本無鉛銲料時程表……………….……..………………..….110 表1.2 歐洲無鉛環境時程表………………………………………….110 表1.3 鉛在各產品中的消耗量……………………..….......................111 表1.4 主要的無鉛銲料組成…………………………..……...............111 表1.5 具潛力的無鉛銲料……………..…….......................................112 表2.1 重要的銲料性質………………………..……...........................112 表3.1 63Sn-37Pb與Sn-3.5Ag性質比較…………………..……......112 表3.2 迴焊用合金的比例分佈………………………………..……...113 表3.3 常用的Sn-Ag-Cu銲料組成…………………..…….................113 表3.4 Sn-Ag-Cu的專利問題………………………………….…..…..114 表3.5 Sn-Ag-Cu合金製造時允許的公差範圍………………..……...114 表5.1 PCB基材的主要特性………...……………………………..….114 表6.1 63Sn-37Pb (Au-Ni-Sn)的厚度成長……………….....................115 表6.2 63Sn-37Pb (Ni-Sn)的厚度成長………………….......................115 表6.3 63Sn-37Pb (Au-Ni-Sn)+(Ni-Sn)的總厚度…………………......115 表6.4 Sn-3.5Ag (Ni-Sn)的厚度成長……………….............................116 表6.5 Sn-4Ag-0.5Cu (Cu-Ni-Au-Sn)的厚度成長………………….....116 表6.6擴散係數(D)與溫度的關係…………………...……………......117 表6.7 IMC之致動能與擴散常數……….………….............................117 表6.8銲點原始剪力強度(0小時)………………………………….....117 表6.9銲點經時效作用120小時後之剪力強度…….……………......118 表6.10銲點經時效作用480小時後之剪力強度…………...……......118 表6.11銲點經時效作用1000小時後之剪力強度…….......................118 表6.12 63Sn-37Pb銲點經等溫時效作用後的破壞面(EDX分析)…..119 表6.13各銲料之剪力模數…………………….…….……………......119 表6.14 Sn-3.5Ag 銲點的穩態潛變率平均值………..........................120 表6.15 Sn-4Ag-0.5Cu 銲點的穩態潛變率平均值…………………..120 表6.16 Sn-3.5Ag在三種不同潛變模型下之材料參數表………........121 表6.17 Sn-3.5Ag應力指數及致動能之比較……………………........121 表6.18 Sn-4Ag-0.5Cu在三種不同潛變模型下之材料參數..………..122 表6.19 Sn-Ag-Cu應力指數及致動能之比較………………………...122 表6.20銲點IMC實驗結果之比較…………………………………....123 表6.21銲點潛變實驗結果之比較……….…………………………...123 圖目錄 圖1.1 電子構裝各階層示意圖………………….………………...….124 圖1.2 半導體晶片的向外連接……………………………..…….......124 圖1.3 UBM的組成結構……………………………..……..................125 圖1.4 TSMC之銲料凸塊製作流程圖……………………..................125 圖1.5 IC組裝流程圖……………..……………..…………………….126 圖1.6 PTH構裝元件截面圖………………………..……………..…..127 圖1.7引腳式表面黏著技術截面圖….………………..……...............127 圖1.8 PBGA構裝元件截面圖…………………………..……............127 圖1.9 FC-BGA構裝元件透視圖….…………………..……...............128 圖1.10 FC-BGA組裝流程圖………..…………………..……............128 圖2.1 CTE不匹配造成的熱應力示意圖………………………...…...128 圖4.1發生擴散需克服之能障(致動能)示意圖……….......................129 圖4.2 典型的潛變曲線……………………..……...............................129 圖4.3空缺擴散…………………………………………......................130 圖4.4間隙擴散…………….………………..……...............................130 圖4.5(a)晶界擴散(b)差排核擴散……………………..........................130 圖4.6材料的變形機制圖…...……………………...............................131 圖4.7擴散潛變………………..............................................................131 圖4.8差排潛變…………….………………..……...............................131 圖4.9差排滑移及爬升機制…………………………..........................132 圖4.10微細晶粒的金屬及合金在高溫下之潛變變形機制................132 圖4.11 63Sn-37Pb的變形機制圖..........................................................132 圖5.1 實驗流程圖…………………………………..……...................133 圖5.2 Instron 8848微拉伸試驗機……………………………....…….134 圖5.3 氣動式夾具 ………………………..…….................................134 圖5.4 微拉伸試驗機外掛溫/溼度控制箱……………..……..............134 圖5.5研磨/抛光機………………………………..……......................135 圖5.6高溫烤箱…………….….………..……................................... ..135圖5.7超音波清洗機…………….……...…………………..……..... ..135 圖5.8 Cu/Ni/Au表面處理……...…………………………..……..... ..135 圖5.9錫球的迴焊曲線…………………………….….........................136 圖5.10 剪力推球試片製作流程圖………………………..…….........136 圖5.11剪力推球試片示意圖……….……………………..…….........136 圖5.12 JEDEC STANDARD-BGA Ball Shear……………..……........137 圖5.13潛變試片示意圖………………................................................137 圖5.14潛變試片黏著至夾具之流程圖……………………..……......138 圖5.15潛變實驗的夾具圖…………………………………..……......138 圖5.16 鑲埋的流程圖……………………….……..............................139 圖6.1迴焊後的63Sn-37Pb銲點外觀圖………….…………..……....140 圖6.2 63Sn-37Pb經125℃時效作用之IMC厚度成長……….……...140 圖6.3 63Sn-37Pb經150℃時效作用之IMC厚度成長 ….…….........141 圖6.4 63Sn-37Pb經175℃時效作用之IMC厚度成長………..…….141 圖6.5 63Sn-37Pb銲點界面IMC的成份分析………………………...142 圖6.6 63Sn-37Pb銲點界面IMC的成份分析……...…….…..….........142 圖6.7 63Sn-37Pb銲點界面IMC層厚度與時效時間的關係…......….142 圖6.8迴焊後的Sn-3.5Ag銲點外觀圖………………..……................143 圖6.9 Sn-3.5Ag經125℃時效作用之IMC厚度成長…………...........143 圖6.10 Sn-3.5Ag經150℃時效作用之IMC厚度成長………….........144 圖6.11 Sn-3.5Ag經175℃時效作用之IMC厚度成長………….........144 圖6.12 Sn-3.5Ag銲點界面IMC的成份分析………………….……..145 圖6.13 Sn-3.5Ag銲點界面IMC層厚度與時效時間的關係…...........145 圖6.14迴焊後的Sn-4Ag-0.5Cu銲點外觀圖…………………...…….146 圖6.15 Sn-4Ag-0.5Cu經125℃時效作用之IMC厚度成長……….…146 圖6.16 Sn-4Ag-0.5Cu經150℃時效作用之IMC厚度成長...………..147 圖6.17 Sn-4Ag-0.5Cu經175℃時效作用之IMC厚度成長………….147 圖6.18 Sn-4Ag-0.5Cu銲點界面IMC的成份分析…...……………....148 圖6.19 Sn-4Ag-0.5Cu銲點界面IMC層厚度與時效時間的關係…...148 圖6.20擴散係數與溫度的關係…………………………………........149 圖6.21銲點界面IMC之致動能……………………………………....149 圖6.22三種銲點之界面IMC層在150℃之厚度成長比較圖……….150 圖6.23三種銲點之界面IMC層在175℃之厚度成長比較圖…….…150 圖6.24 63Sn-37Pb銲點剪力推球強度與時效時間的關係………….151 圖6.25 Sn-3.5Ag銲點剪力推球強度與時效時間的關係………........151 圖6.26 Sn-4Ag-0.5Cu銲點剪力推球強度與時效時間的關係………151 圖6.27 63Sn-37Pb在0小時時效作用(as-reflow)之破壞表面……….152 圖6.28 63Sn-37Pb在125℃時效作用下之破壞表面……………...…152 圖6.29 63Sn-37Pb在150℃時效作用下之破壞表面…...…………....152 圖6.30 63Sn-37Pb在175℃時效作用下之破壞表面……………..….152 圖6.31 63Sn-37Pb在175℃/1000小時之破壞面EDX分析…...….…153 圖6.32 63Sn-37Pb銲點經等溫時效作用後的破壞機制…………….153 圖6.33 Sn-3.5Ag在0小時時效作用之破壞表面………….................154 圖6.34 Sn-3.5Ag在125℃時效作用下之破壞表面……………….…154 圖6.35 Sn-3.5Ag在150℃時效作用下之破壞表面………………….154 圖6.36 Sn-3.5Ag在175℃時效作用下之破壞表面……...………..…154 圖6.37 Sn-4Ag-0.5Cu在0小時時效作用之破壞表面.........................155 圖6.38 Sn-4Ag-0.5Cu在125℃時效作用下之破壞表面.....................155 圖6.39 Sn-4Ag-0.5Cu在150℃時效作用下之破壞表面…………….155 圖6.40 Sn-4Ag-0.5Cu在175℃時效作用下之破壞表面…………….155 圖6.41 Sn-3.5Ag銲點在175℃/1000小時之破壞面EDX分析….….156 圖6.42 Sn-4Ag-0.5Cu銲點在175℃/1000小時之破壞面EDX分析..156 圖6.43三種銲點在125℃之剪力推球強度比較圖……..……………157 圖6.44三種銲點在150℃之剪力推球強度比較圖…………......……157 圖6.45三種銲點在175℃之剪力推球強度比較圖……………….….157 圖6.46 63Sn-37Pb銲點在125℃之剪力推球負載-位移曲線………..158 圖6.47 63Sn-37Pb銲點在150℃之剪力推球負載-位移曲線……..…158 圖6.48 63Sn-37Pb銲點在175℃之剪力推球負載-位移曲線……..…158 圖6.49 63Sn-37Pb銲點在120小時之剪力推球負載-位移曲線……159 圖6.50 63Sn-37Pb銲點在480小時之剪力推球負載-位移曲線……159 圖6.51 63Sn-37Pb銲點在1000小時之剪力推球負載-位移曲線…..159 圖6.52 Sn-4Ag-0.5Cu銲點迴焊後之試片……………………....……160 圖6.53 Sn-3.5Agu銲點(2x2陣列)之負載-位移曲線……………...…160 圖6.54 Sn-3.5Ag銲點之應力-應變曲線(shear)………...……………160 圖6.55 Sn-4Ag-0.5Cu銲點(2x2陣列)之負載-位移曲線(shear)…..…161 圖6.56 Sn-4Ag-0.5Cu銲點之應力-應變曲線(shear)…………...……161 圖6.57剪應變近似值(γ)與實際值(tan-1γ)之比較……………………162 圖6.58剪應變近似值(γ)與實際值(tan-1γ)之誤差……………………162 圖6.59拉伸試驗過程中,應力-應變曲線與試片變形之關係.………163 圖6.60一般金屬材料(鋼材)的應力-應變圖…………………...……163 圖6.61材料真應力-真應變曲線的型態……………………...………164 圖6.62 σ=Kεn的曲線圖………………...…..………………………164 圖6.63 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點剪力強度線性嵌合曲線….. 165 圖6.64 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點剪應力線性嵌合曲線…...…165 圖6.65 Sn-3.5Ag銲點潛變曲線(相同溫度/不同應力等級)…………166 圖6.66 Sn-3.5Ag銲點潛變曲線(相同應力等級/不同溫度)…....……167 圖6.67 Sn-3.5Ag銲點穩態潛變率與應力之間的關係圖……………168 圖6.68 Sn-3.5Ag銲點穩態應變率與溫度倒數之間的關係圖………168 圖6.69 Sn-3.5Ag銲點之主潛變曲線(Dorn方程式)……..……..……169 圖6.70 Sn-3.5Ag銲點之主潛變曲線(sinh模型)………………......…169 圖6.71 Sn-4Ag-0.5Cu銲點潛變曲線(相同溫度/不同應力等級)……170 圖6.72 Sn-4Ag-0.5Cu銲點潛變曲線(相同應力等級/不同溫度)……171 圖6.73 Sn-4Ag-0.5Cu銲點穩態潛變率與應力之間的關係圖………172 圖6.74 Sn-4Ag-0.5Cu銲點穩態潛變率與溫度倒數之間的關係圖…172 圖6.75 Sn-4Ag-0.5Cu銲點之主潛變曲線(Dorn方程式)…….…...…173 圖6.76 Sn-4Ag-0.5Cu銲點之主潛變曲線(sinh模型)..………………173

    1. 陳力俊, 謝宗雍, “微電子材料與製程”.
    2. 江國寧, “電子構裝與計算力學”, 國立清華大學動機系.
    3. Rao R. Tummala, “Fundamentals of Microsystems Packaging,” McGraw Hill, 2001.
    4. TSMC Wafer Solder Bumping.
    5. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering, Vol. 27, pp. 95-141, 2000.
    6. PBGA data sheet, www.amkor.com.
    7. Y. Sawada, K. Harada, H. Fujioka, ”Study of Package Warp Behavior for High-Performance Flip-Chip BGA,” Microelectronics Reliability, Vol. 43, pp. 465–471, 2003.
    8. L. J. Turbini, G. C. Munie, D. Bernier, J. Gamalski and D. W. Bergman, ”Examining the Environmental Impact of Lead-Free Soldering Alternatives,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, No. 1, January 2001
    9. European Lead-free Technology Roadmap, http://www.tintechnology.com.
    10. Z. S. Karim, “Fabrication and Reliability Studies of Lead-Free Solder Bumps,” Advanced Interconnect Technology Ltd..
    11. C. Bastecki, “A Benchmark Process For the Lead-Free Assembly of Mixed Technology PCB’s,” September 1999.
    12. R. Erich, R. J. Coyle, G. M. Wenger and A. Primavera, “Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1999.
    13. K. Y. Lee, M. Li, D. R. Olsen and W. T. Chen, “Microstructure, Joint Strength and Failure Mechanism of Sn-Ag, Sn-Ag-Cu versus Sn-Pb-Ag Solders in BGA Packages,” Electronic Components and Technology Conference, 2001.
    14. C. H. Zhong, S. Yi and D. C. Whalley, “Solder Ball Failure Mechanisms in Plastic Ball Grid Array Packages,” Soldering and Surface Mount Technology, Vol 14, No. 2, pp. 40-50, 2002.
    15. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages,” Soldering and Surface Mount Technology, Vol 11, No. 1, pp. 44-48, 1999.
    16. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, “Brittle Interfacial Fracture of PBGA Package Soldered on Electroless Nickel / Immersion Gold,” Electronic Components and Technology Conference, 1998.
    17. M. Amagai, M. Watanabe, M. Omiya, Kikuo Kishimoto and T. Shibuya, “Mechanical Characterization of Sn-Ag-based Lead-free Solders,” Microelectronics Reliability, Vol. 42, pp. 951–966, 2002
    18. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology,” Materials Science and Engineering R, Vol. 38, pp. 55-105, 2002.
    19. C. E. Ho, L. C. Shiau and C. R. Kao, “Inhibiting the Formation of (Au1–xNix)Sn4 and Reducing the Consumption of Ni Metallization in Solder Joints,” Journal of Electronic Materials, Vol. 31, No. 11, pp. 1264-1269, 2002.
    20. C. M. Liu, C.E. Ho, W.T. Chen and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 30, No. 9, pp.1152-1156, 2001.
    21. T. Woodrow, “Lead Elimination From PWAs,” No-Lead Solder Early Customer Interface Meeting, 9 May 2001, Boeing Phantom Works.
    22. K. Seeling and D. Suraski, “A COMPARISON OF TIN-SILVER-COPPER LEAD FREE SOLDERALLOYS,” AIM Incorporated.
    23. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni,” Journal of Electronic Materials, Vol. 31, No. 6, pp. 584-590, 2002.
    24. L. C. Shiau, C. E. Ho and C. R. Kao, “Reactions Between Sn–Ag–Cu Lead-free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages,” Soldering and Surface Mount Technology, Vol. 14, No. 3, pp.25-29, 2002.
    25. N. Duan, J. Scheer, J. Bielen, M. van Kleef, “The Influence of Sn–Cu–Ni(Au) and Sn–Au Intermetallic Compounds on the Solder Joint Reliability of Flip Chips on Low Temperature Co-fired Ceramic Substrates,” Microelectronics Reliability, Vol. 43, pp. 1317–1327, 2003.
    26. Y. D. Jeon, A. Ostmann, H. Reichl and K. W. Paik, “Comparison of Interfacial Reactions and Reliabilities of Sn3.5Ag, Sn4Ag0.5Cu, and Sn0.7Cu Solder Bumps on Electroless Ni-P UBMs,” Electronic Components and Technology Conference, 2003.
    27. B. Salam, N. N. Ekere and D. Rajkumar, “Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation,” Electronic Components and Technology Conference, 2001.
    28. R. J. Coyle and P. P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 2000.
    29. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn–Ag Based Lead-free Solders and Strain Rate Sensitivity,” Materials Science and Engineering A, Vol. 366, pp. 50–55, 2004.
    30. X. Q. Shi, W. Zhou, H. L. Pang and Z. P. Wang, “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” Journal of Electronic Packaging, , Vol.121, pp. 179-185, September 1999.
    31. S. W. Chen, S. H. Lee and M. C. Yip, “Mechanical Properties and Intermetallic Compound Formation at the SnNi and Sn0.7wt.%CuNi Joints,” Journal of Electronic Materials, Vol. 32, No.11, pp. 1284-1289, 2003.
    32. C. Kanchanomai, Y. Miyashita, Y. Mutoh and S. L. Mannan, “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-free Solder 96.5Sn-3.5Ag,” Materials Science and Engineering A, Vol. 345, pp. 90-98, 2003.
    33. X. Q. Shi, H. L. J. Pang, W. Zhou and Z. P. Wang, “Low cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal of Fatigue, Vol. 22, pp. 217–228, 2000.
    34. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders,” Journal of Electronic Materials, Vol.26, No. 7, 1997
    35. H. Yang, P. Deane, P. Magill and K. L. Murty, “Creep Deformation of 96.5Sn3.5Ag Solder Joint In A Flip Chip Package,” Electronic Components and Technology Conference, 1996.
    36. D. K. Joo and J. Yu, “Effect of Microstructure on the Creep Properties of the Lead- free Sn-3.5Ag-Cu Solders,” Electronic Components and Technology Conference, 2002.
    37. F. Guo, S. Choi, K. N. Subramanian, T. R. Bieler, J. P. Lucas, A. Achari and M. Paruchuri, “Evaluation of Creep Behavior of Near-eutectic Sn-Ag Solders Containing Small Amount of Alloy Additions,” Materials Science and Engineering A, Vol. 351, pp. 190-199, 2003.
    38. H. G. Song, J. W. Morris Jr. and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Material Transaction, Vol. 43, No. 8, pp. 1847-1853, 2000.
    39. S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders Experiments on Bulk Specimens and Flip-Chip Joints,” Electronic Components and Technology Conference, 2001.
    40. A. Schubert, H. Walter, R. Dudek and B. Michel, “Thermo-Mechanical Properties and Creep Deformation of Lead-containing and Lead-free Solders,” International Symposium on Advanced Packaging Materials, 2001.
    41. C. H. Raeder, G. D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L. F. Felton, R.W. Messler, D. B. Knorr and D. Lee, “Isothermal Creep of Eutectic SnBi and SnAg Solder and Solder Joints,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1994.
    42. J. H. L. Pang, B. S. Xiong. C. C. Neo, X. R. Zhang, T. H. Low, “Bulk Solder and Solder Joint Properties for Lead Free 95.5Sn-3.8Ag-0.7Cu Solder Alloy,” Electronic Components and Technology Conference, 2003.
    43. R. Darveaux and K. Banerji, “Constitutive Relations for Tin-Based-Solder Joints,” Electronic Components and Technology Conference, 1992.
    44. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn–Ag–Cu Alloys,” Materials Science and Engineering A, Vol. 333, pp. 106–114, 2002.
    45. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “工程材料科學,” 全華科技圖書股份有限公司, 1996.
    46. P. L. Tu, Y. C. Chan and J. K. L. Lai, “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints,” IEEE Transactions on Components, Packaging and Manufacturing Technology—Part B, Vol. 20, NO. 1, February 1997.
    47. C. B. Lee, J. W. Yoon, S. J. Suh, S. B. Jung, C. W. Yang, C. C. Shur and Y. E. Shin, “Intermetallic Compound Layer Formation Between Sn3.5Ag BGA Solder Ball and (Cu, immersion Au/electroless Ni-P/Cu) substrate,” Journal of Materials Science : Materials in Electronics, Vol. 14, pp. 487-493, 2003.
    48. S. B. Jung, Y. Minamino, T. Yamane and S. Saji, Journal of Materials Science Letter, Vol. 12, 1993.
    49. 彭健雄,許哲榮合譯, Reed-Hill, “物理冶金原理”.
    50. J. Lau, W. Dauksher, J. Smetana, R. Horsley, D. Shangguan and T. Castello, “HDPUG's Design for Lead-Free Solder Joint Reliability of High-Density Packages,” Presented at IPC SMEMA Council APEX® 2003, www.GoAPEX.org.
    51. S. W. R. Lee and X. Huang, “Analysis on Solder Ball Shear Testing Conditions with a Simple Computational Model,” Soldering & Surface Mount Technology, Vol. 14, pp. 45–48, 2002.
    52. K. Bowman, “Mechanical Behavior of Materials,” John Wiley, pp.248, 2004.
    53. D. Grivas, K. L. Murty and J. W. Morris Jr., “Deformation of Pb-Sn Eutectic Alloy at Relatively High Strain Rates,” Acta Metallurgica, Vol. 27, pp.731-737, 1979.
    54. X. Q. Shi, Z. P. Wang, Q. J. Yang and H. L. J. Pang, “Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy,” Journal of Engineering Materials and Technology, Vol. 125, pp. 81-88, January 2003.
    55. JEDEC STANDARD-BGA BALL SHEAR-JESD22-B117.
    56. 韋孟育, “材料實驗方法-金相分析技術”.
    57. JEDEC STANDARD- High Temperature Storage Life-JESD22-A103-B.
    58. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin and C. R. Kao, “Formation and Resettlement of (AuxNi1–x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 29, No. 10, pp. 1175-1181, 2000.
    59. H. D. Blair, T. Y. Pang and J. M. Nicholson, “Intermetallic Compound Growth on Ni, Au/Ni, and Pd/Ni Substrates with Sn/Pb, Sn/Ag, and Sn Solders,” Electronic Components and Technology Conference, pp. 259-267, 1998.
    60. R. J. Coyle, P. P. Solan, A. J. Serafino and S. A. Gahr, “The Influence of Romm Temperature Aging on Ball Shear Strength and Microstructure of Arear Array Solder Balls,” Electronic Components and Technology Conference, 2000.
    61. K. M. Levis and A. Mawer, “Assembly and Solder Joint Reliability of Plastic Ball Grid Array with Lead-Free versus Lead-Tin Interconnect,” Electronic Components and Technology Conference, pp.1198-1204, 2000.
    62. C. E. Pearson, “The Viscous Properties of Extruded Eutectic Alloys of Lead-Tin and Bismuth-Tin, In,” Journal of the Institute of Metals, Vol. 54, pp.111-124, 1934.
    63. Gere and Timoshenko, “Mechanics of Materials,” Fourth Edition, PWS Publishing Company, 1997.
    64. Q. Zhang, A. Dasgupta and P. Haswell, “Viscoplastic Constitutive Properties and Energy- Partitioning Model of Lead-free Sn3.9Ag0.6Cu Solder Alloy,” Electronic Components and Technology Conference, pp.1862-1868, 2003.
    65. X. Shi, Q. Yang, Z. Wang, D. Xie and Z. Shi, “New Creep Constitutive Relationship and Modified Energy-Based Life Prediction Model for Eutectic Solder Alloys,” SIMTech Technical Report (PT/01/021/JT).
    66. X. Q. Shi, Z. P. Wang, W. Zhou, H. L. J. Pang and Q. J. Yang, “A New Creep Constitutive Model for Eutectic Solder Alloy,” Journal of Electronic Packaging, Vol. 124, pp. 85-90, June 2002.
    67. Z. Guo, Y. H. Pao and H. Conrad, “Plastic Deformation Kinetics of 95.5Sn4Cu0.5Ag Solder Joints,” Journal of Electronic Packaging, Vol. 117, pp. 100-104, June 1995.
    68. J. E. Breen and J. Weertman, “Creep of Polycrystalline Tin,” Journal of Metals, pp. 1230-1234, Nov. 1995.
    69. P. Adeva, G. Caruana, O.A. Ruano and M. Torralba, “Microstructure and High Temperature Mechanical Properties of Tin,” Materials and Science Engineering A, Vol. 194, pp. 17-23, 1995.
    70. S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian and J. P. Lucas, “Creep Properties of Sn-Ag Solder Joints Containing Intermetallic Particles,” JOM, pp. 22-26, Jun. 2001.
    71. J. Villaina, O. S. Bruellerb and T. Qasim, “Creep Behaviour of Lead Free and Lead Containing Solder Materials at High Homologous Temperatures with Regard to Small Solder Volumes,” Sensors and Actuators A, Vol. 99, pp. 194–197, 2002.
    72. M. L. Huang, L. Wang and C. M. L. Wu, “Creep behavior of eutectic Sn–Ag Lead-free Solder Alloy,” Journal of Material Research, Vol. 17, No. 11, November 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE