研究生: |
陳育誼 Yu-yi Chen |
---|---|
論文名稱: |
使用奇異點進行指紋分類 Fingerprint Image Classification Based on Singular Points |
指導教授: |
陳朝欽
Chaur-Chin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 指紋 、辨識 、分類 、奇異點 |
外文關鍵詞: | Fingerprint, Identification, Classification, Singular Point |
相關次數: | 點閱:89 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物認證在罪犯蒐證和安全門出入管理上提供很好的技術,例如:虹膜、手形、臉形、手寫辨識、聲紋和指紋辨識。其中,以指紋辨識最常被使用。指紋不但取得方便,其理論和實用也有百年以上的歷史了。但由於指紋辨識系統(Automatic Fingerprint Identification System,AFIS)過程需要比對大量的資料庫,造成花費的時間過於冗長。因此,將指紋進行分類就顯得格外的重要。在論文中,我們實作一個指紋分類系統。
本實驗在兩個不同的資料庫中分別進行,一為FBI所提供的NIST-14資料庫,另一組資料庫則從Live-Scan機器上取得的。實驗所用的機器規格為PIII-733 CPU,256MB RAM及在作業系統Windows 2000 Professional上執行。平均一枚指紋的分類所需時間為1.4秒。在NIST-14 27,000枚資料庫中,正確率為83.13%。如果去除25%品質較差的指紋,正確率可到達88%。而大部份分錯的類別為“Arch”類。而在28枚自行收集的指紋分類結果,正確率為96.4%(只有一枚指紋辨識錯誤)。
指紋分類已經是指紋辨識系統(AFIS)所必要的程序之一。在指紋影像品質良好的情況下,可將大量的指紋資料庫正確的分成四類。而利用奇異點進行分類的方法,必須配合不同的奇異點個數和情況,使用不同的分類依據。實驗中我們發現,當兩個奇異點相距太近,會使得其四周的方向在前處理時遭到破壞,進而無法擷取出來造成分類錯誤。未來解決之後應能增加分類的正確率。
An automatic fingerprint identification system (AFIS) is one of the most important biometric technologies. How to reduce the time of computing in an AFIS with a huge database is an important and necessary issue. Fingerprint classification provides a practical method. In this thesis, we present a fingerprint classification algorithm based on singular points with novel criteria of a classification scheme. A fingerprint is classified into one of the four classes: arch, right loop, left loop, and whorl. The fingerprint classification was tested on 27,000 images in the Nist14 database as well as on 28 images in a live-scan database. The recognition rate of 83.13% for the Nist14 database and 96.4% for the live-scan database have been achieved.
[Baz01] A.M. Bazen and S.H. Gerez, “Extraction of Singular Points from Directional Fields of Fingerprints”, Mobile Communications in Perspective, Annual CTIT Workshop, Enschede, The Netherlands, February 2001.
[Cho00] B.H. Cho, J.S. Kim, J.H. Bae, I.G. Bae, and K.Y. Yoo, “Core-based Fingerprint Image Classification”, Proceedings of the 15th International Conference on Pattern Recognition, 863-866, 2000.
[Dre98] G. Drets and H. Liljenstrom, “Fingerprint Sub-Classification and Singular Point Detection”, Pattern Recognition and Artificial Intelligence, Vol. 12, No. 4, 407-422, 1998.
[FBI84] Federal Bureau of Investigation, “The Science of Fingerprints: Classification and Uses”, U.S. Government Printing Office, Washington, D. C., 1984.
[FBI93] Federal Bureau of Investigation, “WSQ Gray-scale Fingerprint Image Compression Specification”, IAFIS-IC-0110v2, Criminal Justice Information Services, February 1993.
[Gon02] R.C. Gonzalez and R.E. Woods, “Digital Image Progessing”, Prentice-Hall, 2002.
[Hon98] L. Hong, Y. Wan, and A.K. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, 777-789, 1998.
[Jai97] A.K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An Identification- Authentication System Using Fingerprints”, Proceedings of the IEEE, Vol. 85, No. 9, 1365-1388, 1997.
[Kar96] K. Karu, and A.K. Jain, “Fingerprint Classification”, Pattern Recognition, Vol. 29, No. 3, 389-404, 1996.
[Kaw84] M. Kawagoe, and A. Tojo, “Fingerprint Pattern Classification”, Pattern Recognition, Vol. 17, No. 3, 295-303, 1984.
[Rao90] A.R. Rao, “A Taxonomy for Texture Description and Identification”, New York: Springer-Verlag, 1990.
[Sen01] A. Senior, “A Combining Fingerprint Classifiers” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No 10, 1165-1174,2001.
[Sri92] V.S. Srinivasan, and N.N. Murthy, “Detection of Singular Points in Fingerprint Images”, Pattern Recognition, Vol. 25, No. 2, 139-153, 1992.
[Wat99] C.I. Watson, “NIST Special Database 14, Mated Fingerprint Card Pairs 2”, National Institute of Standards and Technology, NIST, 1999.