簡易檢索 / 詳目顯示

研究生: 竇楚鈞
Tou, Chu-Chun
論文名稱: 模型式空間的維度與斯特姆界限
On Dimensions of the Spaces of Modular Forms and the Sturm Bound
指導教授: 魏福村
Wei, Fu- Tsun
口試委員: 張介玉
Chang, Chieh-Yu
洪斌哲
Hung, Pin-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 47
中文關鍵詞: 斯特姆界限模型式空間黎曼面
外文關鍵詞: Sturm bound, modular forms, Riemann surface
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文的目標是要去改善斯特姆界限。我們從模型式空間Mk(Γ)和Sk(Γ)的維度公式的證明中可以知道它們都是有限維的複數向量空間。然後我們定義出Mk(Γ)和Sk(Γ)的「真界限」與其斯特姆界限相比較,最後透過在sage中計算他們的差,我們找到了一個改善斯特姆界限的方法。


    The aim of the paper is to improve the original Sturm bound. First,
    we recall the statement and proof of the dimension formulas for Mk(Γ) and Sk(Γ) which shows that Mk(Γ) and Sk(Γ) are finite dimensional vector spaces over C. Then, we define the "true bounds" of Mk(Γ) and Sk(Γ), and compare them with the Sturm bound. Finally, according to our computation of their differences on sage, we find a way to improve the Sturm bound.

    1. introduction 5 2. Riemann surface 7 3. Modular forms 9 4. Modular curves 12 5. Coordinate neighborhoods 13 6. Dimension formula 15 7. Sturm bound 25 Appendix 31 A. computational result 31 B. The proof of the Riemann-Roch theorem 39 Bibliography 47

    1. Fred Diamond and Jerry Shurman: A First Course in Modular Forms. Springer, New York (2005)
    2. Rick Miranda: Algebraic Curves and Riemann Surfaces. American Mathematical Society, Providence, United States (1995)
    3. William A.Stein: Modular Forms:A Computational Approach. Americam Mathematical Society, Providence, United States (2007)

    QR CODE