研究生: |
余政遠 Yu, Zheng-Yunan |
---|---|
論文名稱: |
共變異數反矩陣的估計 Estimation of covariance inverse |
指導教授: |
許文郁
Shu, Wun-Yi |
口試委員: |
胡毓彬
Hu, Yu-Pin 吳宏達 Wu, Hong-Dar |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 共變異數反矩陣 |
外文關鍵詞: | covariance inverse |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對共變異數反矩陣在高維度情況下的估計,近年來所提出的方式都是對於配適程度與模型簡化中間做一個折衷的方式,採用L1懲罰項的最大概似估計量,但是儘管L1的限制式能有效的找出稀疏的信號,卻會導致估計量有被壓縮的情況產生;為了改善這個問題,我們將找出稀疏的信號與估計這兩個步驟分開進行,希望能有效降低壓縮所導致的誤差。
In recent years ,the estimate of covariance inverse matrix with high dimemsional which between model fitting and model simplifies .Many scholars have suggested that using maximum penalized likelihood function with L1-norm .The L1-norm can identify sparse signal effectively ,but lead to estimator be compressed .To improve this problem ,we will find the location of the spares signal and estimate these separately ,hoping to reduce the resulting of compression of the estimator .
1. N. Meinshausen and P. Buhlmann, (2006). High dimensional graphs and variable selection with the lasso. Annals of statistics, 34:1436-1462
2. Banerjee, O., Ghaoui, L. E. and D' Aspremont, A. (2007). Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research 101 (to appear)
3. Cai, T., Liu, W. & Luo, X. (2011). A constrained l_{1}
minimization approach to sparse precision matrix estimation. J. American Statistical Association 106, 594-607.
4. Cai, T. & Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis. J. American Statistical Association 106, 1566-1577.
5. J. Friedman, T. Hastie, and R. Tibshirani. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1,.
6. Vandenber, L., Boyd, S. & Wu, S.-P. (1998). Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19, 499–533.
7. Huang, J., Liu, N., Pourahmadi, M., and Liu, L. (2006), Covariance selection and estimation via penalised normal likelihood. Biometrika, 93, 85-98. [594]
8. Bickel, P.J. and Levina, E.(2008b). Covariance regularization by thresholding. working paper.
9. Bickel, P.J. and Levina, E.(2008a). Regularized estimation of large covariance matrices, The Annals of Statistics, Vol.36, pp.199-227.
10. K. Madsen, H. B. Nielsen and M. C. Pmar. Bound Constrained Quadratic Programming via Piecewise Quadratic Functions Report IMM-1997-05, IMM, DTU ,DK-2800 I. yngby. 1996. Available as http://www.imm.dtu.dk/~hbn/publ/TR9705.ps
11. Stephen Boyd, Laurent El Ghoui, Eric Feron, and Venkataramanan Balakrishnan. Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics.