研究生: |
陳信安 Hsin-Ann Chen |
---|---|
論文名稱: |
1.8伏差動式電壓輸出數位至類比轉換器 1.8V Differential Voltage Output Digital-to-Analog Converter |
指導教授: |
連振炘
Chen-Hsin Lien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 數位至類比轉換器 |
外文關鍵詞: | Digital-to-Analog Converter |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種數位至類比轉換器電路的架構,電路僅使用單一種低電壓源 1.8V,八位元解析度可操作在 110MHz 取樣頻率之差動式類比電壓輸出。
本數位至類比轉換器電路特點在於全部由 CMOS 元件所組成。無電阻、電容與電感等被動元件,也沒有二極體、雙載子電晶體等主動元件,可以以純 CMOS 邏輯製程來實現本電路,達到低製造成本目標。本電路為差動式電壓模式輸出,其具有 Class A 輸出級的特性,可直接推動 10k 歐姆的電阻並聯 10p 法拉的電容之負載。以 HSPICE 提供的指令,自行撰寫理想的類比至數位轉換器電路與理想的取樣與保持電路程式,來模擬驗證電路各項參數性能,可大幅降低電路模擬驗證時所需的複雜數位輸入訊號。本數位至類比轉換器電路大致上分為 4 個子區塊,其中包括輸入緩衝器電路、 DFF 電路、Decoder 電路與 DAC 核心電路。其中因為數位至類比轉換器電路通常會放在與數位電路非常靠近的地方,為了避免數位電路或系統以外的其它雜訊干擾,所以將數位至類比轉換器的輸出取為差動式輸出,如此可大幅降低共模雜訊的干擾,避免電路誤動作。
經由 HSPICE 模擬驗證且使用 TSMC 0.18um Mixed Signal SALICIDE 製程,在溫度 0℃∼70℃ 且 TT(Typical NMOS Typical PMOS)於 10kΩ 並聯 10pF 負載之下,可得最差結果(Worst Case):上升時間為1.2ns、下降時間為1.2ns、穩定時間為6.3ns、微分非線性為0.01LSB、積分非線性為0.19LSB、突波能量為17.93pVs 與功率消耗為160mW。
[1] “HSPICE Applications Manual U-2003.09-RA”, Synopsys, September 2003.
[2] “HSPICE Command Reference Release U-2003.09-RA”, Synopsys, September 2003.
[3] “HSPICE Signal Integrity Guide U-2003.09-RA”, Synopsys, September 2003.
[4] “HSPICE Simulation and Analysis User Guide Release U-2003.09-RA”, Synopsys, September 2003.
[5] David A. Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley and Sons, Inc., 1997.
[6] R. Jacob Baker, Harry W. Li and David E. Boyee, “CMOS Circuit Design, Layout, and Simulation”, John Wiley and Sons, Inc., 1997.
[7] R. Jacob Baker, “CMOS Mixed-Signal Circuit Design”, John Wiley and Sons, Inc., 2002.
[8] Mark Burns and Gordon W. Roberts, “An Introduction to Mixed-Signal IC Test and Measurement”, New York Oxford, 2001.
[9] Li-Feng Lai, “The test systems for audio-band digital to analog converters, analog to digital converters and analog filters”, Master thesis of Tamkang University, 1994.
[10] Lei Wang, Fukatsu Y. and Watanabe K., “Characterization of current-mode CMOS R-2R ladder digital-to-analog converters”, IEEE Transactions on Instrumentation and Measurement, Volume 50, Issue 6, pp.1781–1786, Dec. 2001.
[11] Jin Park, Seung-Chul Lee, Jin-Sik Yoon and Seung-Hoon Lee, “A 3 V 10 b 100 MS/s digital-to-analog converter for cable modem applications”, IEEE Transactions on Consumer Electronics, Volume 46, Issue 4, pp.1043–1047, Nov. 2000.
[12] Cheng, M.-H. and Huang, T.-C., “Switched-capacitor pipelined logarithmic A/D and D/A convertors”, IEE Proceedings G Circuits, Devices and Systems, Volume 138, Issue 6, pp.714-716, Dec. 1991.
[13] Pelgrom, M.J.M., “A 10-b 50-MHz CMOS D/A converter with 75-Ω buffer”, IEEE Journal of Solid-State Circuits, Volume 25, Issue 6, pp.1347–1352, Dec. 1990.
[14] Bruce, J.W., “Nyquist-rate digital-to-analog converter architectures”, IEEE Potentials, Volume 20, Issue 3, pp.24-28, Aug-Sep 2001.
[15] Jan M. Rabaey, “Digital Integrated Circuits”, Prentice Hall, Inc., 1996.
[16] Nakamura Y., Miki T., Maeda A., Kondoh H. and Yazawa N., “A 10-b 70-MS/s CMOS D/A converter”, IEEE Journal of Solid-State Circuits, Volume 26, Issue 4, pp.637-642, April 1991.
[17] Yao-Chun Lu, “Implementation and Measurement of 9-bit Video Digital-to-Analog Converter Integrated Circuit Design”, Master thesis of NTUST, 1998.
[18] Tzung-Hung Kang, “The Design and Analysis of High-Speed CMOS Digital-to-Analog and Analog-to-Digital Converters”, Master thesis of National Chiao Tung University, 1997.
[19] Maio, K., Hayashi, S.-I., Hotta, M., Watanabe, T., Ueda, S. and Yokozawa, N., “A 500-MHz 8-bit D/A converter”, IEEE Journal of Solid-State Circuits, Volume 20, Issue 6, pp.1133 – 1137, Dec 1985.
[20] Miki, T., Nakamura, Y., Nakaya, M., Asai, S., Akasaka, Y. and Horiba, Y., “An 80-MHz 8-bit CMOS D/A converter”, IEEE Journal of Solid-State Circuits, Volume 21, Issue 6, pp.983 – 988, Dec 1986.
[21] Letham, L., Ahuja, B.K., Quader, K.N., Mayer, R.J., Larsen, R.E. and Canepa, G.R., “A high-performance CMOS 70-MHz palette/DAC”, IEEE Journal of Solid-State Circuits, Volume 22, Issue 6, pp.1041 – 1047, Dec 1987.
[22] Nojima, K. and Gendai, Y., “An 8-b 800-MHz DAC”, IEEE Journal of Solid-State Circuits, Volume 25, Issue 6, pp.1353 – 1359, Dec. 1990.
[23] Fournier, J.M. and Senn, P. “A 130-MHz 8-b CMOS video DAC for HDTV applications”, IEEE Journal of Solid-State Circuits, Volume 26, Issue 7, pp.1073 – 1077, July 1991.
[24] Reynolds, D., “A 320 MHz CMOS triple 8 bit DAC with on-chip PLL and hardware cursor”, IEEE Journal of Solid-State Circuits, Volume 29, Issue 12, pp.1545 – 1551, Dec. 1994.
[25] Neff, R.R., Gray, P.R. and Sangiovanni-Vincentelli, A., “A module generator for high-speed CMOS current output digital/analog converters”, IEEE Journal of Solid-State Circuits, Volume 31, Issue 3, pp.448 – 451, March 1996.
[26] Ji Hyun Kim and Kwang Sub Yoon, “An 8-bit CMOS 3.3-V 65-MHz digital-to-analog converter with a symmetric two-stage current cell matrix architecture”, Circuits and Systems II: IEEE Transactions on Analog and Digital Signal Processing, Volume 45, Issue 12, pp.1605 – 1609, Dec. 1998.
[27] Wong, L.S.Y., Kwok, C.Y. and Rigby, G.A., “A 1-V CMOS D/A converter with multi-input floating-gate MOSFET”, IEEE Journal of Solid-State Circuits, Volume 34, Issue 10, pp.1386 – 1390, Oct. 1999.
[28] Yijun Zhou and Jiren Yuan, “An 8-bit 100-MHz CMOS linear interpolation DAC”, IEEE Journal of Solid-State Circuits, Volume 38, Issue 10, pp.1758 – 1761, Oct. 2003.