簡易檢索 / 詳目顯示

研究生: 黃國禎
Kou-Jeng Huang
論文名稱: 多媒體物件存取的索引結構
Index Structures for Multimedia Information Retrievals
指導教授: 許奮輝 教授
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 53
中文關鍵詞: 索引結構
外文關鍵詞: multidimensional index structure
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無所不在的網路基礎建設已經是上個世紀中促進傳遞資訊的有效媒介。透用瀏覽器,人們可以存取遠端伺服器上許多的多媒體文件,而不需要親自到那裡去。隨著多媒體線上內容資訊量的快速增加,查詢結果的精緻程度變得相當重要,以助於維繫瀏覽過程中的主要焦點。傳統的資料庫已經成功的利用數值和文字的屬性來管理以等性為基礎的資料。維了擴充它的索引能力來管理多媒體資料,許多的多維資料索引技術已經被提出來。在這篇論文中我們將探討這些多維資料結構的演進,與其背後的考量因素。我們特別的研究存取高維資料所遇到的困難。為了測量它的性質,我們提出了許多模型來衡量最近所提出的索引模式,如VA-File, IQ-Tree, UB-Tree. 許多的實驗用來交互檢視所分析到的發現。最後我們對這結果下個結論並討論一些可能的效果改進方法。


    Ubiquitous networking infrastructures have been an effective means to facilitate the information delivery in the last century. Using web browsers, ones can retrieve numerous multimedia documents from remote web sites with no need of physical attendance. As fast-increasing volumes of multimedia contents brought on line, the refinement of the retrievals becomes of great significance to keep a principal focus of browsing. Traditional databases successfully employ alphanumeric attributes to manage data based on the equality. To augment such index capability into the multimedia content, many multi-dimensional index structures were proposed for multimedia data management. In this thesis, we will survey the recent progress of these structures, and discuss the underlying rationale behind the designs. Particularly, we examine the challenges to organize the high-dimensional multimedia objects. For quality measures, we develop several cost models to evaluate the recently proposed schemes, VA-file, IQ-tree, and UB-tree. Several empirical studies are performed to cross-examine the analytical findings. Finally, we conclude the investigation and discuss an alternative approach for possible performance improvement.

    List of Figure iii Chapter 1 Introduction 1 Chapter 2 The Evolution of Multidimensional Index Tree 4 2.1 R-Tree 4 2.1.1 Index Structure of R-Tree 4 2.1.2 Factors of Performance 6 2.1.3 Insert Algorithm of R-Tree 8 2.1.4 Split Algorithm of R-Tree 8 2.2 R+-Tree 9 2.2.1 Index Structure of R+-Tree 10 2.2.2 Split Algorithm of R+-Tree 11 2.3 R*-Tree 11 2.3.1 Index Structure of R*-Tree 11 2.3.2 Insert Algorithm of R*-Tree 11 2.3.3 Split Algorithm of R*-Tree 12 2.4 SS-Tree 12 2.4.1 Index Structure of SS-Tree 13 2.4.2 Insertion Algorithm of SS-Tree 14 2.4.3 Split Algorithm of SS-Tree 14 2.5 SR-Tree 15 2.5.1 Observation 15 2.5.2 Index Structure of SR-Tree 15 2.5.3 Insertion Algorithm of SR-Tree 17 2.5.4 Split Algorithm of SR-Tree 18 2.6 X-Tree 18 2.6.1 Overlap-free Split 19 2.6.2 Structure of X-Tree 19 2.6.3 Cost of Splitting a Node 19 2.6.4 Split Algorithm of X-Tree 20 2.7 VA File 20 2.7.1 Structure of VA file 21 2.7.2 How to filter 22 2.7.3 Search algorithm 24 2.8 IQ-Tree 24 2.8.1 optimal combination of index scheme and sequential scan scheme 25 2.8.2 Index structure of IQ-Tree 25 2.9 UB-Tree 26 2.9.1 Z Value 26 Chapter 3 Query Type 27 3.1 Point Query 27 3.2 Range Query 27 3.3 Nearest Neighbor Query 27 3.3.1 Metrics for nearest neighbor search 28 3.3.2 NN query algorithm 32 3.3.3 Proof of NN query algorithm 33 Chapter 4 Challenge and Problem of High Dimension 35 4.1 Characteristic of High Dimension 35 4.2 The Cost Model of NN Search 36 4.3 Methods of Breaking Dimensional Curse 37 Chapter 5 Performance Study 38 5.1 Experiment Setup 38 5.2 Result 38 Chapter 6 Future Work and Concluding Remark 43 Bibliography 44

    [Beckmann90b] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard Seeger, “The R*-tree: an efficient and robust access method for points and rectangles,” In Proc. of ACM-SIGMOD Conf., pages 322-331, Atlantic City NJ, May 1990.
    [Berchtold00] Stefan Berchtold, Christian Böhm, H.V. Jagadish, Hans-Peter Kriegel and Jörg Sander, “Independent Quantization: An Index Compressing Technique for High Dimensional Data Space,” In Proc. of Conf. on Data Engineering, pages 577-588, San Diego, LA, February 2000.
    [Berchtold96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Krigel, “The X-tree: An Index Structure for High-Dimensional Data,” In Proc. of VLDB conf., pages 28-39, Bombay, India, September 1996
    [Berchtold97] Stefan Berchtold, Christian Böhm, Daniel A. Keim and Hans-Peter Kriegel, “A Cost Model For Nearest Neighbor Search in High-Dimensional Data Space,” In ACM-PODS Symposium, pages 78-86, Tucson, Arizona, May 1997.
    [Beyer99] Kevin Beyer, Jonathan Goldstein, Raghu Ramarkrishnan, and Uri Shaft, “When is Nearest Neighbor Meaningful,” In Proc. of ICDT Conf., pages217-235, Jerusalem, Israel, January 1999.
    [Chaudhuri97] S. Chaudhuri and U. Dayal, “Data Warehousing and OLAP for Decision Support,” Tutorial, In Proc. of ACM-SIGMOD Conf., Tucson, Arizona, May 1997.
    [Ciaccia97] P. Ciaccia, M. Patella and P. Zazula, “M-tree: An efficient access method for similarity search in metric spaces,” In Proc. Of VLDB conf., pages 426-435, Athens, Greece, August 1997.
    [Faloutsos85] Christos Faloutsos, “Access methods for text,” In ACM Computing Survey, 17(1), pages 49-74, March 1985.
    [Faloutsos87] C. Faloutsos and S. Christodoulakis, “Description and Performance Analysis of Signature File Methods,” In ACM Trans. on Office Information Systems (TOOIS), 5(3), pages 237-257, July 1987.
    [Faloutsos95] Christos Faloutsos and King-Ip Lin, “FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets,” In Proc. of ACM SIGMOD Conf., pages 163-174, San Jose, CA, 1995.
    [Faloutsos96] Christos Faloutsos, “Searching Multimedia Databases By Contents,” Kluwer Academic Press, 1996.
    [Finkel74] R. Finkel and J. Bentley, “Quad-trees: A data structure for retrieval on composite keys,” In ACTA Informatica, 4(1): pages 1-9, 1974.
    [Flickner95] M. Flickner, H. Sawhney, W. Niblack, et al., "Query by image and video content: The QBIC system," In IEEE Computer Magazine, vol. 28, pages 23-32, September 1995.
    [Gaede98] Volker Gaede and Oliver Günther, “Multidimensional Access Methods,” In ACM computing Surveys, vol. 30, No. 2, pages 209-266, June 1998.
    [Goldstein97] Jonathan Goldstein and Raghu Ramarkrishnan, “Compressing Relations and Indexes,” In Proc. of Conf. on Data Engineering, pages 370-379, Orlando, Florida, 1998.
    [Guttman84] Antonm Guttman, “R-tree: a dynamic index structure for spatial searching,” In Proc. of ACM-SIGMOD Conf., pages 47-57, Boston, MA, June 1984.
    [Henrich89] Andreas Henrich, Hans-Werner Six, Peter Widmayer, “The LSD tree: Spatial Access to Multidimensional Point and Nonpoint Objects,” In Proc. of VLDB Conf., pages 45-53, Amsterdam, The Netherlands, August 1989.
    [Hellerstein95] J. M. Hellerstein, J.F. Naughton, and A. Pfeffer, “Generalized search trees for databases systems,” In Proc of VLDB Conf., pages 562-573, Zurich, Switzerland, September 1995.
    [Hinterberger84] Hans Hinterberger, Kenneth C. Sevcik and J. Nievergelt, “The Grid File: An Adaptable, Symmetric Multikey File Structure,” In ACM Transactions On Database Systems, Vol.9, No. 1, pages 38-71, March 1984.
    [Hjaltason95] G. R. Hjaltason and H. Samet, “Ranking in Spatial Database,” in Advances in Spatial Databases--4th Symposium, pages 83-95, Springer-Verlag, Berlin, 1995.
    [Jagadish91] H. V. Jagadish, “A Retrieval Technique for Similar Shapes,” In Proc. of ACM–SIGMOD Conf., pages 208-217, Denver, Colorado, May 1991.
    [Jain96] D.A. White and R. Jain, “Similarity Indexing with the SS-tree,” In Proc. of Conf. on Data Engineering, pages 516-523, New Orleans, LA, 1996.
    [Katayama97] Norio Katayama and Shin’ichi Satoh, “The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries,” In Proc. Of ACM-SIGMOD Conf., pages 369-380, Tucson, Arizona, May 1997.
    [Kriegel90a] Hans-Peter Kriegel and Bernhard Seeger, “The Buddy tree: An Efficient and Robust Access Method for Spatial Database System,” In Proc. of VLDB conf., pages 590-601, Brisbane, Queensland, Australia, August 1990.
    [Kruskal78] Joseph B. Kruskal and Myron Wish, “Multidimensional scaling,” SAGE publications, Beverly Hills, 1978.
    [Lin94] King-Ip Lin, H.V. Jagadish and Christos Faloutsos, ”The TV-tree: An Index Structure for High-Dimensional Data,’ In VLDB Journal, Vol. 3, pages 517-542, October 1994.
    [Mehrotra95] Mehrotra R., Gray J. E. “Feature-Index-Based Similar Shape Retrieval,” In Proc. of Conf. on Visual Database Systems, 1995
    [Ramsak00] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt and Rudolf Bayer, "Integrating the UB-Tree into a Database System Kernel," In Proc. of VLDB Conf., pages 263-272, Cairo, Egypt, September 2000.
    [Robinson91] John T. Robinson, “The K-D-B tree: A Search Structure for Large Multidimensional Dynamic Indexes,” In Proc. of ACM-SIGMOD Conf., pages 10-18, Ann Arbor, Michigan, April 1981.
    [Roussopoulos85] Nick Roussopoulos and Daniel Leifker, “Direct Spatial Search on Pictorial Databases Using Packed R-trees,” In Proc. of ACM-SIGMOD Conf., pages 17-31, Austin, Texas, May 1985.
    [Roussopoulos95] Nick Roussopoulos, Stephen Kelly and Frederic Vincent, “Nearest Neighbor Search,” In Proc. of ACM-SIGMOD Conf., pages 71-79, San Jose, California, May 1995.
    [Sellis87] Timos Sellis, Nick Roussopoulos and Christos Faloutsos, “The R+-tree: a dynamic index for multidimensional objects,” In Proc. of 13th VLDB Conf., pages 507-518, Brighton, England, September 1987.
    [Shawney94] H. Shawney, J. Hafner, “Efficient Color Histogram Indexing,” In Proc. of Conf. On Image Processing, pages 66-70, Austin, Texas, November 1994.
    [Shoichet92] Shoichet B. K. Bodian D. L., Kuntz I. D., “Molecular Docking Using Shape Descriptros,” In Journal of Computational Chemistry, Vol.13 No. 3, pages 380-397, 1992.
    [Stricker95] Markus Stricker and Markus Orengo, “Similarity of color images,” In Storage and Retrieval for Image and Video Databases, SPIE, pages 381-392, San Jose, CA, 1995.
    [Ullman88] Jerrey D. Ullman, “Principles of Database and Knowledge-Base Systems,” Volume 1. Computer Science Press, 1988.
    [Wallace80] T. Wallace, P. Wintz, “An Efficient Three-Dimensional Aircraft Recognition Algorithm Using Normalized Fourier Descriptors,” In Computer Graphics and Image Processing, Vol. 13, pages 99-126, 1980.
    [Weber97] Roger Weber and Stephen Blott, “An approximation based data structure for similarity search,” In Technical Reprot 24, ESPRIT project HERMES (no.9141), October 1997.
    [Weber98] Roger Weber, Hans-J. Schek and Stephen Blott, “A Quantitative Analysis and Performance Study for Similarity-Search methods in High-Dimensional Spaces,” In Proc. of VLDB conf., pages 194-205, New York City, New York, August 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE