研究生: |
邱于倫 CHIU, YU-LUN |
---|---|
論文名稱: |
16奈米電晶體之寄生電阻萃取技術及電流壅塞效應研究 A Study of Parasitic Resistance Extraction and a Current Crowding Effect in FinFETs |
指導教授: |
林崇榮
LIN, CHRONG-JUNG |
口試委員: |
金雅琴
施教仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 鰭式電晶體 、寄生電阻 、電流壅塞 、凱文結構 |
外文關鍵詞: | FinFET, Parasitic Resistance, Current Crowding, Kelvin Structure |
相關次數: | 點閱:82 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電晶體急速微縮的時代裡,三維度立體結構的鰭式電晶體高微縮的可能性使其在先進製程中大量被採用。然而鰭式電晶體雖已達到了更短的電晶體通道與極好的操作特性,其在接觸槽、源極汲極磊晶區等部分的寄生電阻與通道電阻的比例卻大大的提升,在電晶體導通時形成不容小覷的功率消耗。且由於短通道效應的存在,傳統上用於萃取寄生電阻的量測技術逐漸失去其準確性,使的先進製程在寄生電阻微縮的領域裡失去一個精確的參考指標。
本篇論文中回顧許多傳統寄生電阻萃取方法,包含經典的接觸點萃取之凱文結構等,並對其中受短通道效應影響較弱的部分進行改良。最後的結果成功分析了鰭式電晶體中的寄生電阻,更將電晶體接觸槽 (MD)、磊晶區(Epitaxy)與源極汲極輕摻雜區(SD Extension)之電阻萃取後做比較。鰭式電晶體中寄生電阻值阻值約占總電阻的三分之一,與長通道元件相比,寄生電阻的比則更加提高。
對寄生電阻進行萃取的討論過程中另外衍伸出電流壅塞效應(Current Crowding)對電晶體寄生電阻的影響,當電流壅塞效應明顯時,電流所感受的等效寄生電阻將比電流均勻下之電阻來的大。因此若能減緩電流壅塞效應則電晶體將有機會進一步降低寄生電阻。本論文的第四章即是透過模擬軟體討論減緩電晶體電流壅塞效應的可行性,目前透過將接觸槽深入磊晶區之想法可將寄生電阻有效地降低。
本論文希望提供先進製程精確萃取短通道元件寄生電阻之方法,並透過舒緩電流壅塞效應以進一步降低。
To scale CMOS field-effect transistors (FETs) well into the sub-20nm region, multi-gate structure, such as, FinFET is adapted as the mainstream technology solution for the suppression of short channel effects. However, epitaxial S/D regions and aggressively scaled channel length lead to enhanced parasitic effect. The serious parasitic effects affect the device performance and limit the further scaling of CMOS technology . In the past decades, several extraction methodologies for characterizing the parasitic resistance from the total device resistance under conduction were proposed. In these conventional methods, constant channel mobility and constant effective channel length under different vertical field are often their basic assumptions. While comes to the generation of FinFET device, most of them then returns inaccurate value due to strong short channel effect and apparent current crowding effect.
In this work, multiple characterization methods on a series of test patterns including traditional Kelvin Structures and Cross Bridge Kelvin Structures are discussed and verified experimentally under mature FinFET processing. The new extraction methods become insensitive to constant mobility and Leff assumptions, hence more accurate and consistent results can be obtained, giving a practical overview of parasitic resistance in a FinFET device.
[1] International Technology Roadmap for Semiconductors, ITRS, Denver, CO, USA, 2011.
[2] C. H. Wann et al., “A Comparative Study of Advanced MOSFET Concepts,” IEEE Transactions on Electron Devices, vol. 43, no. 10, pp. 1742–1753, Oct. 1996.
[3] Q. Lu et al., “Dual-Metal Gate Technology for Deep-Submicron CMOS Transistor,” in VLSI Symp. Tech. Dig., 2000, pp. 72–73.
[4] J. Kedzierski et al., “Complementary Silicide Source/Drain Thin-Body MOSFETs for the 20 nm Gate Length Regime.” in Proc. IEEE Int. Electron Devices Meeting, 2000, pp. 57–60.
[5] C. Hu, “Scaling CMOS Devices Through Alternative Structures,” Science in China (Series F). February 2001, 44 (1) 1–7
[6] Y-K. Choi et al., “Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era,” IEEE Electron Device Letters, vol. 21, no. 5, pp. 254–255, May 2000.
[7] X. Huang et al., “Sub 50-nm FinFET: PMOS,” in Proc. IEEE Int. Electron Devices Meeting, 1999, pp. 67–70.
[8] F.-L. Yang et al., “25 nm CMOS Omega FETs,” in Proc. IEEE Int. Electron Devices Meeting, 2002, pp. 255–258.
[9] F.-L. Yang et al., “5 nm-Gate Nanowire FinFET,” in Proc. Symp. VLSI Technol., 2004. pp. 196–197.
[10] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling,” IEEE Transactions on Electron Devices, vol.59, no.7, pp.1813–1828, Jul. 2012.
[11] K. Sato and Y. Yasumura, “Study of the Forward I–V Plot for Schottky Diodes with High Series Resistance,” J. Appl. Phys., vol. 58, no. 9, pp. 3655–3657, Nov. 1985.
[12] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A Systematic Approach to the Measurement of Ideality Factor, Series Resistance, and Barrier Height for Schottky Diodes,” J. Appl. Phys., vol. 72, no. 10, pp. 4739–4742, Nov. 1992.
[13] K. Terada and H. Muta, “A New Method to Determine Effective MOSFET Channel Length,” Japan. J. Appl. Phys., vol. 18, no. 5, pp. 953–959, May 1979.
[14] S. E. Laux, “Accuracy of an Effective Channel Length/External Resistance Extraction Algorithm for MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1245–1251, Sep. 1984.
[15] B. J. Sheu, C. Hu, P. Ko, and F. C. Hsu, “Source-and-Drain Series Resistance of LDD MOSFET’s,” IEEE Electron Device Letters, vol. 5, no. 9, pp. 365–367, Sep. 1984.
[16] C. Duvvury, D.A.G. Baglee and M.P. Duane, “Comments on ‘Source-and-Drain Series Resistance of LDD MOSFET’s’,” IEEE Electron Dev. Lett. EDL-5, 533–534, Dec. 1984.
[17] B.J. Sheu, C. Hu, P. Ko and F.C. Hsu, “Reply to ‘Comments on “Source-and-Drain Series Resistance of LDD MOSFET’s”’,” IEEE Electron Dev. Lett. EDL-5, 535, Dec. 1984.
[18] K. Takeuchi et al., “An effective channel length determination method for LDD MOSFETs,” IEEE Transactions on Electron Devices, vol. 43, no. 4, pp.580–587, Apr. 1996.
[19] J. Kim et al., “Accurate Extraction of Effective Channel Length and Source/Drain Series Resistance in Ultrashort-Channel MOSFETs by Iteration Method,” IEEE Transactions on Electron Devices, vol. 55, no. 10, pp.2779–2784, Oct. 2008.
[20] Yuan Taur, “MOSFET channel length: extraction and interpretation,” IEEE Transactions on Electron Devices, vol. 47, no. 1, pp.160–170, Jan. 2000.
[21] Yuan Taur et al., “A new ‘shift and ratio’ method for MOSFET Channel-Length Extraction," IEEE Electron Device Letters, vol. 13, no. 5, pp.267–269, May 1992.
[22] Qiuyi Ye and Serge Biesmans, “Leff Extraction for Sub-100nm MOSFET Devices,” Solid-State Electronics, vol. 48, no. 1, pp. 163–166, Jan. 2004.
[23] H. v Meer et al., “Limitations of Shift-and-Ratio Based Leff Extraction Techniques for MOS Transistors with Halo or Pocket Implants,” IEEE Electron Device Letters, vol. 21, no. 3, pp.133–136, Mar. 2000.
[24] E. Fathi et al., “An improved shift-and-ratio Leff Extraction Method for MOS Transistors with Halo/Pocket Implants,” in Proc. Int. Semicond. Device Resear. Symp., 2003, pp.430–431.
[25] D.-W. Lin et al., “A Constant-Mobility Method to Enable MOSFET Series-Resistance Extraction,” IEEE Electron Device Letters, vol. 28, no. 12, pp.1132–1134, Dec. 2007.
[26] J. P. Campbell et al., “A Simple Series Resistance Extraction Methodology for Advanced CMOS Devices,” IEEE Electron Device Letters, vol. 32, no. 8, pp.1047–1049, Aug. 2011.
[27] H. Fukutome; D. Leonelli; J. Lee; H. Oh; S. Kwon; S. Maeda, “pratical extraction methodology of silicide-interface resistance in a single transistor with narrow gate-pitch based on temperature dependence available for FinFET,” in Proc. IEEE Int. Electron Devices Meeting Material.
[28] Y.-C. Yeo et al., “MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations.” IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 1027–1035, Apr. 2003.
[29] T. Ghani et al., “A 90 Nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors,” in Proc. IEEE Int. Electron Devices Meeting, 2003, pp. 11.6.1–11.6.3.
[30] D. J. Frank et al., “Device scaling limits of Si MOSFETs and Their Application Dependencies,” Proc. IEEE, vol. 89, no. 3, pp. 259–288, Mar. 2001.
[31] Y.-C. Yeo et al., “Enhanced Performance in Sub-100nm CMOSFETs Using Strained Epitaxial Silicon-Germanium.” in Proc. IEEE Int. Electron Devices Meeting, 2000, pp. 753–756.
[32] L. K.Nanver et al., “Kelvin Test Structure for Measuring Contact Resistance of Shallow Junctions,” in Proc. Microelectronic Test Structures, 1996. pp. 241–245. ICMTS 1996. Proceedings. 1996 IEEE International Conference on , vol., no., pp.241,245, 25-28 Mar 1996.
[33] N. Stavitski et al., “Cross-Bridge Kelvin Resistor Structures for Reliable Measurement of Low Contact Resistances and Contact Interface Characterization,” IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 1, pp.146–152, Feb. 2009.
[34] T. F. Lei et al., “Specific Contact Resistivity Measurement by a Vertical Kelvin Test Structure,” IEEE Transactions on Electron Devices, vol. 34, no. 6, pp.1390–1395, Jun. 1987.
[35] C. L. Lee et al., “The Spreading Resistance Error in the Vertical Kelvin Test Resistor Structure for the Specific Contact Resistivity,” IEEE Transactions on Electron Devices, vol.35, no. 4, pp. 521–523, Apr. 1988.
[36] H. Murrmann and D. Widmann, “Current Crowding on Metal Contacts to Planar Devices,” IEEE Transactions on Electron Devices, vol. 16, no. 12, pp. 1022–1024, Dec. 1969.
[37] J. M. Pimbley, “Dual-Level Transmission Line Model for Current Flow in Metal-Semiconductor Contacts,” IEEE Transactions on Electron Devices, vol. 33, no. 11, pp.1795–1800, Nov. 1986.
[38] H. Yu et al., “A Simplified Method for (Circular) Transmission Line Model Simulation and Ultralow Contact Resistivity Extraction,” IEEE Transactions on Electron Devices, vol. 35, no. 9, pp.957–959, Sep. 2014.
[39] J. W. Jin and Y. Bonnassieux, “Drift-Diffusion Analysis of Current Crowding Mechanism: Current-Dependent Series Resistance,”
Journal of Display Technology, vol. 9, no. 11, pp.865–870, Nov. 2013.
[40] A. Scorzoni et al., “Current Crowding and Misalignment Effects as Sources of Error in Contact Resistivity Measurements–Part I: Computer Simulation of Conventional CER and CKR Structures,” IEEE Transactions on Electron Devices, vol. 34, no. 3, pp. 525–531, Mar. 1987.
[41] P. Cappelletti et al., “Current Crowding and Misalignment Effects as Sources of Error in Contact Resistivity Measurements–Part II: Experimental Results and Computer Simulation of Self-Aligned Test Structures,” IEEE Transactions on Electron Devices, vol. 34, no. 3, pp. 532–536, Mar. 1987.
[42] Schroder, D. (1990). Contact Resistance and Schottky Barriers. In Semiconductor material and device characterization. New York: Wiley.