研究生: |
呂致泓 Lu, Chih-Hung |
---|---|
論文名稱: |
無人機輔助衛星邊緣計算系統的能量優化算法 An Energy Optimization Algorithm for UAV-Assisted Satellite Edge Computing System |
指導教授: |
許健平
Sheu, Jang-Ping |
口試委員: |
邱德泉
Chiu, Te-Chuan 郭建志 Kuo, Jian-Jhih |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 無人機 、行動邊緣運算 、衛星通訊 、物聯網 |
外文關鍵詞: | Unmanned Aerial Vehicle (UAV), Mobile Edge Computing, Satellite Communication, Internet of Things (IoT) |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來行動邊緣運算已成為物聯網中的一項熱門的應用,邊緣運算可藉由衛星通訊的輔助實踐在偏遠地區,然而與衛星直接通訊所消耗的能量對物聯網設備來說是一項挑戰。本篇論文研究透過無人機來輔助行動邊緣運算系統,其中無人機與衛星皆可提供行動邊緣運算的服務。此論文的目的是在無人機的電量有限之條件下,決定無人機的飛行軌跡與物聯網設備的上傳決策,以最小化所有物聯網設備的能量消耗。為了解決此問題,我們首先利用一個現有的啟發式演算法來解決經典的越野問題,接著我們進一步提出一個動態規劃的演算法,減少無人機在盤旋期間的能量消耗以服務更多的物聯網設備。模擬數據顯示我們提出的演算法相比其他方法有更好的效能表現。
In recent years, mobile edge computing (MEC) has become one of the most popular applications in the Internet of Things (IoT). With the help of satellite communications, MEC can be realized in remote areas. However, when transmitting directly to satellites, the energy consumption of IoT devices remains a challenge. In this thesis, an unmanned aerial vehicle (UAV) assisted MEC system is studied, in which the UAV and satellite are both feasible MEC servers providing computation services. This thesis aims to minimize the total energy consumption among all IoT devices by jointly determining the offloading decision and UAV's trajectory under the constraint of an energy budget. To tackle the problem, we utilize an existing heuristic algorithm for solving the classic Orienteering Problem and propose a dynamic programming (DP) algorithm to reduce the hovering cost of the UAV to serve more IoT devices. Numerical results show that the performance of the proposed algorithm is better than the baselines.
[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
[2] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimiza- tion of transmission and computation resources for satellite and high altitude platform assisted edge computing,” IEEE Transactions on Wireless Commu- nications, vol. 21, no. 2, pp. 1362–1377, 2022.
[3] Z. Zhang, W. Zhang, and F.-H. Tseng, “Satellite mobile edge computing: Im- proving QoS of high-speed satellite-terrestrial networks using edge computing techniques,” IEEE Network, vol. 33, no. 1, pp. 70–76, 2019.
[4] G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy optimization for MEC enhanced SAT-IoT networks,” IEEE Access, vol. 8, pp. 55915–55926, 2020.
[5] S. A. Huda and S. Moh, “Survey on computation offloading in UAV-enabled mobile edge computing,” Journal of Network and Computer Applications, p. 103341, 2022.
[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2018.
[7] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and R. Masroor, “Energy efficient UAV-enabled mobile edge computing for IoT devices: A review,” IEEE Access, vol. 9, pp. 127779–127798, 2021.
[8] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient resource allocation in UAV-enabled mobile edge computing networks,” IEEE Transac- tions on Wireless Communications, vol. 18, no. 9, pp. 4576–4589, 2019.
[9] J. Xu, K. Ota, and M. Dong, “Big data on the fly: UAV-mounted mobile edge computing for disaster management,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 2620–2630, 2020.
[10] X. Hu, K.-K. Wong, and Y. Zhang, “Wireless-powered edge computing with cooperative UAV: Task, time scheduling and trajectory design,” IEEE Trans- actions on Wireless Communications, vol. 19, no. 12, pp. 8083–8098, 2020.
[11] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems,” IEEE Jour- nal on Selected Areas in Communications, vol. 36, no. 9, pp. 1927–1941, 2018.
[12] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, “Satellite- terrestrial integrated edge computing networks: Architecture, challenges, and open issues,” IEEE Network, vol. 34, no. 3, pp. 224–231, 2020.
[13] Y. Wang, J. Zhang, X. Zhang, P. Wang, and L. Liu, “A computation offloading strategy in satellite terrestrial networks with double edge computing,” in 2018 IEEE International Conference on Communication Systems, Chengdu, China, 2018, pp. 450-455.
[14] S. Mao, S. He, and J. Wu, “Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing,” IEEE Systems Journal, vol. 15, no. 3, pp. 3992–4002, 2021.
[15] R. Kant and A. Mishra, “The orienteering problem: A review of variants and solution approaches,” World Multi-Conference on Systemics, Cybernetics and Informatics, Florida, USA, 2022, pp. 41-46.
[16] G. Kobeaga, M. Merino, and J. A. Lozano, “An efficient evolutionary al- gorithm for the orienteering problem,” Computers & Operations Research, vol. 90, pp. 42–59, 2018.
[17] R. Ramesh and K. M. Brown, “An efficient four-phase heuristic for the gen- eralized orienteering problem,” Computers & Operations Research, vol. 18, no. 2, pp. 151–165, 1991.
[18] L. Zhang and N. Ansari, “Latency-aware IoT service provisioning in UAV- aided mobile-edge computing networks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10573–10580, 2020.
[19] Y. Wang, H. Guo, and J. Liu, “Cooperative task offloading in UAV swarm- based edge computing,” in 2021 IEEE Global Communications Conference, Madrid, Spain, 2021, pp. 1-6.
[20] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi- UAV-enabled load-balance mobile-edge computing for IoT networks,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6898–6908, 2020.
[21] Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S. Hong, “Energy-efficient resource management in UAV-assisted mobile edge computing,” IEEE Communications Letters, vol. 25, no. 1, pp. 249–253, 2020.
[22] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO satellite networks with hybrid cloud and edge computing,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9164–9176, 2021.
[23] Z. Song, Y. Hao, Y. Liu, and X. Sun, “Energy-efficient multiaccess edge com- puting for terrestrial-satellite internet of things,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 14202–14218, 2021.
[24] Y. Hao, Z. Song, Z. Zheng, Q. Zhang, and Z. Miao, “Joint communication, computing, and caching resource allocation in LEO satellite MEC networks,” IEEE Access, vol. 11, pp. 6708–6716, 2023.
[25] H. Liao, Z. Zhou, X. Zhao, and Y. Wang, “Learning-based queue-aware task offloading and resource allocation for space–air–ground-integrated power IoT,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5250–5263, 2021.
[26] S. Mao, S. He, and J. Wu, “Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing,” IEEE Systems Journal, vol. 15, no. 3, pp. 3992–4002, 2021.
[27] B. Chen, N. Li, Y. Li, X. Tao, and G. Sun, “Energy efficient hybrid offloading in space-air-ground integrated networks,” in 2022 IEEE Wireless Communi- cations and Networking Conference, Austin, TX, USA, 2022, pp. 1319-1324.
[28] Y. Chen, B. Ai, Y. Niu, H. Zhang, and Z. Han, “Energy-constrained computa- tion offloading in space-air-ground integrated networks using distributionally robust optimization,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 12113–12125, 2021.
[29] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen, “Space/aerial-assisted computing offloading for IoT applications: A learning- based approach,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1117–1129, 2019.
[30] F. Chai, Q. Zhang, H. Yao, X. Xin, R. Gao, and M. Guizani, “Joint multi- task offloading and resource allocation for mobile edge computing systems in satellite IoT,” IEEE Transactions on Vehicular Technology, pp. 1–15, 2023.
[31] M. Hua, Y. Wang, Z. Zhang, C. Li, Y. Huang, and L. Yang, “Power-efficient communication in UAV-aided wireless sensor networks,” IEEE Communica- tions Letters, vol. 22, no. 6, pp. 1264–1267, 2018.
[32] Z. Jia, M. Sheng, J. Li, D. Niyato, and Z. Han, “LEO-satellite-assisted UAV: Joint trajectory and data collection for internet of remote things in 6G aerial access networks,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9814– 9826, 2020.
[33] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communi- cation with rotary-wing UAV,” IEEE Transactions on Wireless Communica- tions, vol. 18, no. 4, pp. 2329–2345, 2019.
[34] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation and communication design for UAV-assisted mobile edge computing in IoT,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5505–5516, 2020.
[35] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.
[36] J. Zhang, Y. Zeng, and R. Zhang, “UAV-enabled radio access network: Multi- mode communication and trajectory design,” IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5269–5284, 2018.