簡易檢索 / 詳目顯示

研究生: 鄭碩賢
Cheng, Shuo-Hsien
論文名稱: 利用雙色光短脈衝雷射產生之電漿態激發寬頻兆赫波
Broadband Terahertz Emission by two-color Laser-Induced filament in isotropic media
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 趙如蘋
張存續
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 寬頻兆赫波
外文關鍵詞: broadband terahertz
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用聚焦短脈衝雷射產生之空氣電漿所輻射出的寬頻兆赫波,其理論可以用瞬時光電流模組來解釋,空氣分子經由聚焦的雙色短脈衝雷射離子化產生電漿,自由電子受到雙色雷射脈衝的驅動產生具有方向性的瞬時光電流,而這個瞬時光電流被視為是寬頻兆赫波的發射源。其中,雙色雷射脈衝之間的相位差是一個影響兆赫波強度的重要因素,模擬結果顯示,相位差為π/2時產生之兆赫波強度比起相位差為0時強很多,因為較為不對稱的電場分佈會得到較強的方向性電流。其他影響兆赫波強度的因素也會在論文中被討論,例如入射雷射強度、二倍頻轉換效率、波長和脈衝寬度等。此外,瞬時光電流模組也用來討論不同階的混頻光對於兆赫波產生的可能性。
    此外,利用固態材料可以產生比氣體更高密度的電漿的特點,實驗上我們亦利用雙色短脈衝雷射打入石英玻璃,量測經由石英玻璃內部電漿產生的兆赫波,並與用空氣電漿產生的兆赫波訊號做比較。


    Laser-induced gas-plasma or filament can be used as the emitter of intense, coherent and broadband terahertz (THz) wave. The generation process can be well-described by transient photocurrent model, in which the transient current caused by two-color laser field is the source of broadband THz radiation. The air molecules are ionized by focused two-color laser field, and free electrons driven by the laser field will form the directional transient current radiating the THz wave. The relative phase between two-color laser field is an important factor that will affect the output THz yield. Simulation of THz emission by the transient photocurrent model is carried out in this work. Because of the stronger directional transient current under the influence of asymmetric electric field, the THz yield will be much stronger when the relative phase equals to π⁄2 than 0. The dependences of other parameters on generating THz radiation are also discussed. These include pumping intensity, power conversion efficiency, wavelength, and pulse duration. The dependence of pumping intensity on THz emission has been compared to the experimental results. Furthermore, by multi-color laser field are also investigated..
    On the other hand, the plasma density is much higher in solid-state materials than that in the gas. Therefore, we also conducted studies of THz generation from solid-state material, fused silica.

    摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures vi List of Tables ix Chapter1 Introduction 1 1-1 Terahertz Technology 1 1-2 Terahertz wave air photonics 3 1-2-1 Generation of terahertz wave with laser-induced air plasma 3 1-2-2 Detection of terahertz wave with laser-induced air plasma 4 1-3 Motivation and objectives 5 1-4 Organization of this thesis 5 Chapter2 Theoretical Background 7 2-1 Terahertz wave generation from laser-induced air plasma 7 2-1-1 Four wave mixing model 9 2-1-2 Transient photocurrent model 11 2-2 Terahertz wave detection methods 16 2-2-1 Terahertz wave detection method based on electro-optic sampling technique 16 2-2-2 THz-air-biased coherent detection technique 19 Chapter3 Simulation work of transient photocurrent model 21 3-1 The concept of transient photocurrent formed in air plasma 21 3-2 Fundamental and second harmonic mixing 27 3-2-1 The dependence of THz generation on relative phase 33 3-2-2 The dependence of THz generation on pumping intensity 34 3-2-3 The dependence of THz generation on conversion efficiency 36 3-2-4 The dependence of THz generation on pulse duration 37 3-2-5 The dependence of THz generation on wavelength 38 3-3 Fundamental and third harmonic mixing 39 3-4 Fundamental, second and third harmonic mixing 41 3-5 Non-harmonic mixing 44 Chapter4 Experimental Setup and System Performance 46 4-1 Laser System (Tsunami, Spitfire) 46 4-2 Terahertz time-domain spectroscopy system with detection based on electro-optic sampling 50 Chapter5 Experimental results 55 5-1 THz generation from laser-induced air plasma 55 5-1-1 The dependence of THz generation on incident pumping power 55 5-1-2 The dependence of THz generation on rotating angle of BBO crystal 59 5-1-3 The dependence of THz generation on distance from BBO crystal to plasma 60 5-2 THz generation from fused silica 62 5-2-1 The dependence of THz generation on incident pumping power 62 5-2-2 The dependence of THz generation on rotating angle of BBO crystal 65 5-2-3 The dependence of THz generation on distance from BBO crystal to plasma 66 5-3 Comparison of air plasma and fused silica 67 Chapter6 Construction work of THz-air-biased coherent detection 69 6-1 Experimental setup 69 6-2 Precaution and Operation procedure 72 6-3 Discussion 73 Chapter7 Conclusions and Future works 75 7-1 Conclusions 75 7-2 Future works 75 Reference 77

    [1] Jared H. Strait, Paul A. George, Mark Levendorf, Martin Blood-Forsythe, Farhan Rana, and Jiwoong Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy,” Nano Lett., Vol. 9, No. 8, pp. 2967-2972, June 2009.
    [2] Jefferson Lab, Terahertz radiation frequency range (2003) (http://wwwold.jlab.org/news/releases/2003/03felthz.html)
    [3] Katsuhiro Ajito and Yuko Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, pp. 293-300, September 2011
    [4] B. B. Hu and M. C. Nuss, W E. Sleat, and W Sibbett, “Imaging with terahertz waves,” Opt. Lett., Vol. 20, No. 16, pp. 1716-1718, August 1995.
    [5] A.G. Marklz, A. Roitberg and E.J. Heilweil,”Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0THz” Chemical physics letters Vol.320 pp.42-48, 2000.
    [6] R. Piesiewicz, T. Kleine-Ostmann, N.Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner,”Short-range ultra-broadband terahertz communications: concepts and perspectives” IEEE antennas and propagation magazine Vol.49 No.6 pp.24-39, December 2007.
    [7] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., Vol. 45, No. 3, pp. 284-286, May 1984.
    [8] A. Rice, Y. Jin, X. F. Ma, X.C. Zhang, D. Bliss et al., “Terahertz optical rectification from 110 zincblende crystals,” Appl. Phys. Lett., Vol. 64, No. 11, pp. 1324-1326, March 1994.
    [9] X.C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett., Vol. 56, No. 11, pp. 1011-1013, March 1990.
    [10] Rüdeger Köhler et al, “Terahertz semiconductor heterostructure laser,” NATURE, Vol. 417, No. 6885, pp. 156-159, May 2002.
    [11] Q. Wu and X.C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., Vol. 67, No. 24, pp. 3523-3525, December 1995.
    [12] D. Frischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, ”far-infrared time domain spectroscopy with terahertz beams of dielectrics and semiconductors” J. Opt. Soc. Am. B Vol.7 No.10, pp.2006-2015, 1990.
    [13] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212, 2000.
    [14] Hamster, H., et al., Phys Rev Lett, 71(17), 2725, 1993.
    [15] K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Exp., vol. 15, no. 8, pp. 4577–4584, 2007.
    [16] J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett., vol. 97, pp. 103903-1–103903-4, 2006.
    [17] H. Hamster, A. Sullivan, S. Gordon, and R.W. Falcone,Phys. Rev. E 49, 671 ,1994.
    [18] T. Löffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett., Vol. 77, No. 3, pp. 453-455, July 2000.
    [19] T. Löffler and H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser generated nitrogen plasma,” J. Appl. Phys., Vol. 91, No. 5, pp. 2611-2614, March 2002.
    [20] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett., Vol. 25, No. 16, pp. 1210-1212, August 2000.
    [21] Mark D. Thomson, Markus Kreß, Torsten Löffler, and Hartmut G. Rosk, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser & Photon. Rev., Vol. 1, No. 4, pp. 349-368, November 2007.
    [22] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett., Vol. 25, No. 16, pp. 1210-1212, August 2000.
    [23] Markus Kress, Torsten Löffler, Susanne Eden, Mark Thomson, and Hartmut G. Roskosr, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett., Vol. 29, No. 10, pp. 1120-1122, November, 2004.
    [24] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett., Vol. 30, No. 20, pp. 2805-2807, October 2005.
    [25] Xu Xie, Jianming Dai, and X.-C. Zhang, “Coherent Control of THz Wave Generation in Ambient Air,” Phys. Rev. Lett., Vol. 96, pp. 075005, February 2006.
    [26] Klaus Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys., Vol. 70, pp. 1597-1632, September 2007.
    [27] K. Y. Kim, J. H. Glownia, A. J. Taylor and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, Vol. 15, No. 8, pp. 4577- 4584, April 2007.
    [28] K. Y. KIM, A. J. TAYLOR, J. H. GLOWNIA AND G. RODRIGUEZ, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” nature photonics, Vol. 2, pp. 605-609, October 2008.
    [29] Ki-Yong Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas, Vol. 16, pp. 056706 1-8, May 2009.
    [30] I. Babushkin, W. Kuehn, C. Ko¨hler, S. Skupin, L. Bergé, K. Reimann, M.Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases,” Phys. Rev. Lett., Vol. 105, pp. 053903, July 2010.
    [31] Yasuo Minami, Makoto Nakajima, and Tohru Suemoto, “Effect of preformed plasma on terahertz-wave emission from the plasma generated by two-color laser pulses,” Phys. Rev. A, Vol. 83, pp. 023828, 1990.
    [32] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett., Vol. 30, No. 20, pp. 2805-2807, October 2005.
    [33] Xu Xie, Jianming Dai, and X.-C. Zhang, “Coherent Control of THz Wave Generation in Ambient Air,” Phys. Rev. Lett., Vol. 96, pp. 075005, February 2006.
    [34] Klaus Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys., Vol. 70, pp. 1597-1632, September 2007.
    [35] Jianming Dai, Nicholas Karpowicz, and X.-C. Zhang, “Coherent Polarization Control of TerahertzWaves Generated from Two-Color Laser-Induced Gas Plasma,” Phys. Rev. Lett., Vol. 103, pp. 023001, July 2009.
    [36] C.M. Chang, The studies of indium-tin-oxide nanostructures by broadband terahertz spectroscopy. Master dissertation, National Tsing Hua University, Hsinchu, 2012.
    [37] Mark D. Thomson, Markus Kreß, Torsten Löffler, and Hartmut G. Rosk, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser & Photon. Rev., Vol. 1, No. 4, pp. 349-368, November 2007.
    [38] I. Babushkin, W. Kuehn, C. Ko¨hler, S. Skupin, L. Bergé, K. Reimann, M.Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases,” Phys. Rev. Lett., Vol. 105, pp. 053903, July 2010.
    [39] T. I. Oh, Y. S. You, and K. Y. Kim, “Two-dimensional plasma current and optimized terahertz generation in two-color photoionization,” Opt. Express, Vol. 20, No. 18, pp. 19778-19786, August 2012.
    [40] N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, and C. Fletcher, ”Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett., vol. 92, pp. 011131-1–011131-3, 2008.
    [41] Yun-Shik Lee, “Principles of terahertz science and technology,” Chapter3, springer, 2009.
    [42] J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of THz waves generated from asymmetrically ionized gases,” Journal of Physics: Conference Series,276, 012003,2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE