研究生: |
呂昀融 Lu, Yun-Jung |
---|---|
論文名稱: |
文本情感分析與平台經濟:Foodpanda與Uber Eats的比較 Sentiment Analysis and Platform Economy:The Comparison of Foodpanda and Uber Eats |
指導教授: |
洪世章
Hung, Shih-Chang |
口試委員: |
陳宗權
Chen, Tzong-Chyuan 曾詠青 Tseng, Yung-Ching |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 文本情感分析 、自然語言處理 、平台經濟 、Foodpanda 、Uber Eats |
外文關鍵詞: | sentiment analysis, natural language processing, platform economy, Foodpanda, Uber Eats |
相關次數: | 點閱:62 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用文本情感分析,探討平台經濟的成長過程。平台經濟是一種新型態
的商業模式,平台的提供者並不生產產品,只提供實體或虛擬的平台服務,讓生
產者與消費者可以進行交易,並收取適當的費用作為營收。這種新興的商業模式
是如何成長,在過去的文獻較少探討,本研究利用自然語言處理的分析工具:文
本情感分析,來探討並比較兩家美食外送平台的成長過程:Foodpanda 與Uber
Eats。我們蒐集Google Play 的線上用戶評論作為原始資料,時間從2016 年10 月至2019 年11 月。根據文本情感分析視覺化的結果,我們發現Foodpanda 與Uber Eats 於2018 年7 月,在平台成長初期的情感分數皆為負值,顯示台灣社會大眾對於美食外送平台起初是有些抗拒的,但隨著平台的成長,兩者的情感分數都有逐漸提升的趨勢,又以Foodpanda 的情感分數上升的更為快速,甚至於2019 年7 月超越了Uber Eats,並且在這之後兩間平台的情感分數開始走向趨緩。本文接著進行比較個案分析,探討「如何」以及「為何」這兩家美食外送平台的情感分數是如此變化。本研究對於平台經濟的發展有所貢獻,更重要的是,我們以情感這一個獨特的視角來進行實證分析。
This article uses sentiment analysis to study the growth of platform economy. The platform economy is a new business model. The provider of platform does not produce products, but only provides physical or virtual platform services, so that producers and consumers can conduct transactions and charge appropriate fees as revenue. How this emerging business model has grown is rarely discussed in the past literature. This study uses the approach of natural language processing: sentiment analysis to explore and compare the growth of two food delivery platforms: Foodpanda and Uber Eats. We collected online user reviews from Google Play as empirical data in 2016-2019.
According to the results of visualization of sentiment analysis, we found that Foodpanda and Uber Eats had negative sentiment scores in the early stage of the platform growth in July 2018, showing that the Taiwanese market was somewhat resistant to the food delivery platform at first. But, with the growth of the platform, the sentiment scores of both have gradually increased, and Foodpanda's sentiment scores have risen more rapidly, surpassing Uber Eats in July 2019. Afterwards, the sentiment scores of the two platforms began to slow down. This article then conducts a comparative case analysis to explore how and why the sentiment scores changed so
much. This paper contributes to the development of platform economy, and more importantly, we conduct empirical analysis from a unique perspective of sentiment.
中文部分
吳怡靜,2019,要獲利也要影響力,培力900萬個微企業,天下雜誌,686:16-18。
李雅筑,2020,年前罷工、搞訂閱,平台大師破解外送戰盲點,商業周刊,1680:54-56。
林豪鏘、曾鈺涓、張家鈞,2020,情感運算:情緒分析的創意運用,科學發展,569:55-63。
楊孟軒,2019,外送訂單32倍成長,連超商都不用出門,天下雜誌,688:206-207。
楊竣傑,2019,企業「共感行銷」靠網紅左右55%消費者意願,Cheers雜誌,222:62-70。
蔡茹涵,2020,Foodpanda總座獨家專訪:我要找出生鮮外送市場的規則,商業周刊,1693:28-30。
英文部分
Aaker, D. A. 1996. Measuring brand equity across products and markets. California Management Review, 38(3): 102-20.
Anastasia, S., & Budi, I. 2016. Twitter sentiment analysis of online transportation service providers. International Conference on Advanced Computer Science and Information Systems (ICACSIS).
Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. 2020. The application of text mining methods in innovation research: Current state, evolution patterns, and development priorities. R&D Management, 50(3): 329-351.
Archak, N., Ghose, A., & Ipeirotis, P.G. 2011. Deriving the pricing power of product features by mining consumer reviews. Management Science, 56(8): 1485-1509.
Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., & Schweidel, D. A. 2020. Uniting the tribes: Using text for marketing insight. Journal of Marketing, 84(1): 1-25.
Boiy, E., & Moens, M. F. 2009. A machine learning approach to sentiment analysis in multilingual web texts. Information Retrieval, 12: 526-558.
Breiman, L. 2001. Random forests. Machine Learning, 45(1): 5-32.
Burnham, T. A., Frels, J. K., & Mahajan, V. 2003. Consumer switching costs: A typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2): 109-126.
Chevalier, J. A., & Mayzli. 2006. The effect of word of mouth on sales: Online book reviews. Marketing Science, 43(3): 345-354.
Conati, C. 2002. Probabilistic assessment of user's emotions in educational games. Applied Artificial Intelligence, 16(7/8): 555-575.
Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., & Hess, K. T. 2007. Random forests for classification in ecology. Ecology, 88(11): 2783-2792.
Denzin, N. K. 1970. The research act: A theoretical introduction to sociological methods. New York, NY: McGraw Hill.
Detzel, R., Mahle, I., & Patzmann, J. U. 2016. The connection between service design and brand personality: An explorative study analyzing the curated-shopping-platform "Zalon by Zalando". Markenbrand, 5: 57-65.
Duan, W., Cao, Q., Yu, Y., & Levy, S. 2013. Mining online user-generated content: Using sentiment analysis technique to study hotel service quality. 46th Hawaii International Conference on System Sciences.
Duan, W., Gu, B., & Whinston, A.B. 2008. Do online reviews matter? - An empirical investigation of panel data. Decision Support Systems, 45(4): 233-42.
Eisenmann, T. R., Parker, G. & van Alstyne, M. W. 2009. Opening platforms: How, when and why? In A. Gawer (Eds.), Markets and innovation: 131-162. Cheltenham, UK: Edward Elgar.
Eisenmann, T., Parker, G. & van Alstyne, M. 2006. Strategies for two-sided markets. Harvard Business Review, 84 (10): 92-101.
Eloranta, V., & Turunen, T. 2016. Platforms in service-driven manufacturing: Leveraging complexity by connecting, sharing, and integrating. Industrial Marketing Management, 55: 178-186.
Fang, X., & Zhan, J. 2015. Sentiment analysis using product review data. Journal of Big Data, 2(5): https://doi.org/10.1186/s40537-015-0015-2.
Galperin, R. V. 2020. Organizational powers: Contested innovation and loss of professional jurisdiction in the case of retail medicine. Organization Science, 31(2): 508-534.
Gao, Y., Kang, M., Wang, T., & Wang, M. 2014. The role of switching costs in O2O platforms: Antecedents and consequences. International Conference on Management of e-Commerce and e-Government.
Gawer, A. & Cusumano, M.A. 2014. Industry platforms and ecosystem innovation. Journal of Product Innovation Management, 31(3): 417-433.
Gawer, A. 2014. Bridging differing perspectives on technological platforms: Toward an integrative framework. Research Policy, 43(7): 1239-1249.
Genuer, R., Poggi, J. M., & Tuleau-Malot, C. 2010. Variable selection using random forests. Pattern Recognition, 31(14): 2225-2236.
George, G., Haas, M., & Pentland, A. 2014. Big data and management. Academy of Management Journal, 57(2): 321-326.
Gephart, R. P. 1993. The textual approach: Risk and blame in disaster sensemaking. Academy of Management Journal, 36(6): 1465-1514.
Graebner, D., Zanker, M., Fliedl, G., & Fuchs, M. 2012. Classification of customer reviews based on sentiment analysis. 19th Conference on Information and Communication Technologies in Tourism (ENTER).
Guzman, E., & Maalej, W. 2014. How do users like this feature? A fine grained sentiment analysis of App reviews. IEEE 22nd International Requirements Engineering Conference.
Haddi, E., Liu, X., & Shi, Y. 2013. The role of text preprocessing in sentiment analysis. Procedia Computer Science, 17: 26-32.
He, W., Wu, H., Yan, G., Akula, V., & Shen, J. 2015. A novel social media competitive analytics framework with sentiment benchmarks. Information and Management, 52(7): 801-812.
Heidenreich, S., & Kraemer, T. 2015. Innovations - Doomed to fail? Investigating strategies to overcome passive innovation resistance. Journal of Product Innovation Management, 33(3): 277-297.
Hogenraad, R. 2018. Fear in the West: A sentiment analysis using a computer-readable “Fear Index”. Quality & Quantity, 53: 1239-1261.
Holbrook, M. B., & Batra, R. 1987. Assessing the role of emotions as mediators of consumer responses to advertising. Journal of Consumer Research, 14(3): 404-420.
Hoyer, W. D., & Brown, S. P. 1990. Effects of brand awareness on choice for a common, repeat-purchase product. Journal of Consumer Research, 17(2): 141-148.
Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. 2000. Switching barriers and repurchase intentions in services. Journal of Retailing, 76(2): 259-274.
Juma, C. 2016. Innovation and its enemies: Why people resist new technologies. Madison Avenue, NY: Oxford University Press.
Keller, K. L. 1993. Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1): 1-22.
Kelly, K. 2016. The Inevitable: Understanding the 12 technological forces that will shape our future. Viking Press, New York, NY.
Kenney, M., & Zysman, J. 2016. The rise of the platform economy. Issues in Science and Technology, 32(3): 61-69.
Kharde, V., & Sonawane, P. 2016. Sentiment analysis of Twitter data: A survey of techniques. International Journal of Computer Applications, 139(11): 5-15.
Kolbe, R. H., & Burnett, M. S. 1991. Content-analysis research: An examination of applications with directives for improving research reliability and objectivity. Journal of Consumer Research, 18(2): 243-250.
Krippendorff, K. 1980. Content analysis. Beverly Hills, CA: Sage.
Lehdonvirta, V., Kässi, O., Hjorth, I., Barnard, H., & Graham, M. 2019. The global platform economy: A new offshoring institution enabling emerging-economy microproviders. Journal of Management, 45(2): 567-599.
Leveau, N., Jhean-Laros, S., Denhière, G., & Nguyen, B.-L. 2012. Validating an interlingual metanorm for emotional analysis of texts. Behavior Research Methods, 44: 1007-1014.
Li, Q.-H., Chen, Y.-J., & Sun, J.-G. 2003. A new dictionary mechanism for Chinese word segmentation. Journal of Chinese Information Processing, 17(4): 14-19.
Liu, B. 2012. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies. San Rafael, CA: Morgan & Claypool Publishers.
Liu, B. 2015. Sentiment analysis: Mining opinions, sentiments, and emotions. New York, NY: Cambridge University Press.
Lovelin, M., Felciah, R., & Anbuselvi. 2015. A study on sentiment analysis of social media reviews. 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS).
Luce, M. F., Payne, J. W., & Bettman, J. R. 1999. Emotional trade-off difficulty and choice. Journal of Marketing Research, 36(2): 143-159.
Macdonald, E. K., & Sharp, B. M. 2000. Brand awareness effects on consumer decision making for a common, repeat purchase product: A replication. Journal of Business Research, 48(1): 5-15.
McGlohon, M., Glance, N. S., & Reiter, Z. 2010. Star quality: Aggregating reviews to rank products and merchants. International Conference on Web and Social Media: 114-121.
Morwitz, V. G., & Pluzinski, C. 1996. Do polls reflect opinions or do opinions reflect polls? Journal of Consumer Research, 23(1): 53-65.
Nagle, F. 2013. Stock market prediction via social media: The importance of competitors. Academy of Management Proceedings.
Neethu, M. S., & Rajasree, R. 2013. Sentiment analysis in twitter using machine learning techniques. International Conference on Computing, Communications and Networking Technologies (ICCCNT).
Pang, B., & Lee, L. 2008. Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1/2): 1-135.
Pang, B., Lee, L., & Vaithyanathan, S. 2002. Thumbs up? Sentiment classification using machine learning techniques. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
Parker, G. & van Alstyne, M.W. 2005. Two-sided network effects: a theory of information product design. Management Science, 51(10): 1494-1504.
Parker, G. G., van Alstyne, M. W., & Choudary, S. P. 2016. Platform revolution: How networked markets are transforming the economy - and how to make them work for you. New York, NY: W. W. Norton & Co.
Parker, G., & Van Alstyne, M. W. 2008. Managing platform ecosystems. Proceedings of the 29th International Conference on Information Systems.
Pentina, I., Zhang, L., & Basmanova, O. 2013. Antecedents and consequences of trust in a social media brand: A cross-cultural study of Twitter. Computers in Human Behavior, 29(4): 1546-1555.
Porter, M. E. 1985. Competitive advantage: Creating and sustaining superior performance. New York, NY: Free Press.
Ram, S. 1989. Successful innovation using strategies to reduce consumer resistance: An empirical test. Journal of Product Innovation Management, 6(1): 20-34.
Rochet, J. C., & Tirole, J. 2003. Platform competition in two-sided markets. Journal of the European Economic Association, 1(4): 990-1029.
Samiee, S. 1994. Customer evaluation of products in a global market. Journal of International Business Studies, 25(3): 579-604.
Snyder, B., & Barzilay, R. 2007. Multiple Aspect Ranking using the Good Grief Algorithm. Proceedings of the Joint Human Language Technology/North American Chapter of the ACL Conference (HLT-NAACL).
Suárez, J. L., White, R. E., Parker, S. C., & Jiménez-Mavillard, A. 2020. Entrepreneurship bias and the mass media: Evidence from big data. Academy of Management Discoveries. In Press.
Tan, L. K.-W., Na, J.-C., Theng, Y.-L., & Chang, K. 2011. Sentence-level sentiment polarity classification using a linguistic approach. The 13th International Conference on Asia-Pacific Digital Libraries.
Tang, F., Fu, L., Yao, B., & Xu, W. 2019. Aspect based fine-grained sentiment analysis for online reviews. Information Sciences, 488: 190-204.
Tinati, R., Halford, S., Carr, L., & Pope, C. 2014. Big data: Methodological challenges and approaches for sociological analysis. Sociology, 48(4): 663-681.
Tiwana, A. 2015. Evolutionary competition in platform ecosystems. Information Systems Research, 26(2): 266-281.
Tiwana, A., Konsynski, B., & Bush, A. A. 2010. Platform evolution: Coevolution of platform architecture, governance, and environmental dynamics. Information Systems Research, 21(4): 675-687.
Tonidandel, S., King, E. B., & Cortina, J. M. 2018. Big data methods: Leveraging modern data analytic techniques to build organizational science. Organizational Research Methods, 21(3): 525-547.
Tseng, C.-W., Chou, J.-J., & Tsai, Y.-C. 2018. Text mining analysis of teaching evaluation questionnaires for the selection of outstanding teaching faculty members. IEEE Access, 6: 72870-72879.
Turney, P. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the Association for Computational Linguistics: 417-424.
van Alstyne, M. W., Parker, G. G., & Choudary, S. P. 2016. Pipelines, platforms, and the new rules of strategy. Harvard Business Review, 94(4): 54-62.
Westbrook, R. A., & Oliver, R. L. 1991. The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of Consumer Research, 18(1): 84-91.
Yeo, V. C. S., Goh, S. K., & Rezaei, S. 2017. Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35: 150-162.
Zhu, F., & Iansiti, M. 2012. Entry into platform-based markets. Strategic Management Journal, 33(1): 88-106.