簡易檢索 / 詳目顯示

研究生: 林政興
Lin, Cheng-Hsing
論文名稱: 開發感應耦合電漿質譜儀連線分析系統搭配披覆式微流體晶片型光觸媒輔助還原蒸氣生成裝置進行微量砷與汞物種之分析研究
Development of ICP-MS hyphenated analytical systems with microfluidic-based photocatalyst-assisted vaporization devices for the quantification of trace arsenic and mercury species
指導教授: 孫毓璋
Sun, Yuh-Chang
口試委員: 黃友利
Huang, Yeou-Lih
曾維昌
Tseng, Wei-Chang
吳劍侯
Wu, Chien-Hou
李清福
Lee, Ching-Fu
施宗廷
Shih, Tsung-Ting
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 228
中文關鍵詞: 微量元素分析光觸媒輔助還原蒸氣生成法感應耦合電漿質譜儀連線分析系統微流體晶片
外文關鍵詞: trace element analysis, photocatalyst-assisted reduction vapor generation, ICP-MS, hyphenated analytical system, microfluidic chip
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從微量元素的毒物學行為與生物化學的作用與其本身的化學形式有非常大的相關性被廣泛證實以來,時至今日,砷與汞物種的濃度分布情形在風險評估上已成為不可或缺的資訊。現今的文獻中,對於微量元素分析而言,光觸媒輔助還原蒸氣生成技術已被認為是一種靈敏且有效地分析技術。此外,近來一套靈敏、穩固並具有發展潛力的披覆式微流體晶片型奈米二氧化鈦光觸媒輔助蒸氣生成裝置 (nano-TiO2 μFPCAVD) 被成功開發並串連至連線分析系統中,且成功地應用於環境水體中微量無機硒物種的分析。為了擴展μFPCAVDs的性能,本研究利用μFPCAVDs串連建立三套連線分析系統分別針對環境水體與生物樣品中的微量汞與砷進行分析。
    首先,本研究建立了一套microdialysis (MD)–nano-TiO2 μFPCAVD–inductively coupled plasma-mass spectrometry (ICP-MS) 連線分析系統,並應用於在硫柳汞 (TMHg) 暴露後,活體大鼠腦部組織細胞間液 (ECF) 中汞濃度的線上動態變化監測的分析研究上。在最適化操作參數條件下,本連線分析系統對於生理食鹽水中的甲基汞 (MMHg) 與TMHg的偵測極限 (limits of detection,LODs) 分別為2.7及1.7 ng L-1,並藉由與ICP-MS直測進行比較以評估系統的分析準確度。再經由實際應用於經MMHg與TMHg暴露後的活體動物腦部組織ECF中汞濃度的線上動態變化監測分析的方式進行MD–nano-TiO2 μFPCAVD–ICP-MS連線分析系統應用的可行性評估。由本研究的實驗結果可知,MD–nano-TiO2 μFPCAVD–ICP-MS可以有效地應用於活體動物腦部組織ECF中汞濃度的線上動態變化監測分析且其分析結果具有相當高的可信度。經由實驗數據發現暴露TMHg後所形成的含汞物質亦可以如MMHg般經由目前未知的途徑穿過血腦障壁進入腦部組織中。
    其次,本研究亦建立了一套HPLC–nano-TiO2 μFPCAVD–ICP-MS連線分析系統,藉以針對環境水體中微量汞物種進行分析。藉由降低層析分離過程中的動相溶液流速與錯合試劑組成成分的濃度,在微量汞物種分析過程中,不僅能夠保持足夠好的汞物種分離效率更有效地控制了藥劑空白的汙染問題。在最適化操作參數條件下,本連線分析系統對於汞離子 (Hg(II)) 與MMHg的偵測極限 (LODs) 分別為0.52及0.58 ng L-1,並以標準參考樣品 (Seronorm™ trace elements urine L-2) 的分析評估系統的分析準確度。
    最後,本研究亦發展了一套以披覆式微流體晶片型奈米複合材料光觸媒輔助蒸氣生成裝置 (nanocomposite μFPCAVD) 搭配高效能液相層析 (HPLC) 與感應耦合電漿質譜儀 (ICP-MS) 所建立的連線分析系統進行有選擇性且靈敏的分析方法針對微量無機砷物種進行分析。藉由奈米金的沉積針對nano-TiO2表面進行改質,使此奈米複合材料的光觸媒輔助還原效率可以有效提升。在最適化操作參數條件下,本連線分析系統對於無機三價砷 (As(III)) 與無機五價砷 (As(V)) 的偵測極限 (LODs) 分別為0.23及0.34 g·L−1,並以標準參考樣品 (NIST SRM 1643e) 的分析評估系統的分析準確度。
    本研究所開發的連線分析系統亦實際應用於環境樣品或生物樣品的分析藉以進行真實樣品的可應用性評估。經實驗結果可知,本研究所開發的三套連線分析系統可以提供毒性及環境相關研究領域一系列具有發展潛力的分析方法。


    Since it has been widely recognized that the toxicological behaviors and the biochemical functions of trace elements are highly dependent on chemical forms, the species information on arsenic (As) and mercury (Hg) is considered indispensable for the risk assessment. Over past decades, the utilities of photocatalyst-assisted reduction vapor generation techniques for the analysis of trace elements have been demonstrated. Afterward, the emergence of nano-TiO2 coated microfluidic-based photocatalyst-assisted vaporization device (nano-TiO2 μFPCAVD) hyphenated system provides not only a sensitive but also a robust analytical system for trace analysis of inorganic selenium species in natural water. To expand the capability, in this study, various analytical systems hyphenated with μFPCAVDs were developed for the determination of Hg and As at trace levels in natural water and biological samples.
    For the first of the analytical systems, a microdialysis (MD)–nano-TiO2 μFPCAVD–inductively coupled plasma-mass spectrometry (ICP-MS) hyphenated analytical system was proposed for the in vivo quantification of the transition of Hg concentration level in the extracellular fluid (ECF) of rat brains after the administration of thimerosal (TMHg). Under optimal operation conditions, the limits of detection (LODs) for methylmercury (MMHg) and TMHg were 2.7 and 1.7 ng·L−1, respectively. The accuracy of the analytical results was validated using method comparison with ICP-MS detection. The applicability of the proposed analytical system was evidenced by the observations of the variation in the brain ECF Hg concentration in living animals after the administration of MMHg and TMHg. Based on the obtained results, the proposed analytical system exhibited satisfactory reliability and validity to monitor the transition of the ECF Hg concentration level. The results also indicated that the administration of TMHg can cause Hg-containing substances to penetrate through the blood–brain barrier as MMHg via an unclear mechanism.
    Additionally, a high-performance liquid chromatography (HPLC)–nano-TiO2 μFPCAVD–ICP-MS hyphenated analytical system was developed for the Hg speciation analysis in natural water. With reduction of operation flow rate and complexing agent concentration in the mobile phase solution for chromatographic separation, either the separation efficiency and the reagent blank are well controlled for the determination of Hg species at trace level. Under optimal operation conditions, the LODs for mercuric ion (Hg(II)) and MMHg were 0.52 and 0.58 ng·L−1, respectively. The accuracy was validated using certified reference material (Seronorm™ trace elements urine L-2).
    Ultimately, to achieve selective and sensitive determination of trace inorganic As species, i.e., As(III) and As(V), a nanocomposite μFPCAVD coupled with HPLC separation and ICP-MS detection was employed. Gold nanoparticles were deposited on nano-TiO2 to strengthen the conversion efficiency of the nanocomposite photocatalytic reduction. Under optimal operation conditions, the LODs for As(III) and As(V) were 0.23 and 0.34 μg·L−1, respectively. The accuracy was validated using certified reference material (NIST SRM 1643e).
    The applicability was also established via the analysis of natural water samples or biosamples with all three proposed hyphenated analytical systems. Based on the obtained results, the proposed analytical systems can provide potential alternative methods for toxicological and environmental research.

    中文摘要……………………………………………………………..…………………………....I 英文摘要…………………………………………………………………………………...……III 謝誌…………………………………………………………………………………...…………VI 目錄………………………………………………………………………………….…………VII 圖目錄………………………………………………………………………………………….XII 表目錄…………………………………………………………………………………………XVI 第一章 前言……………………………………………………………………………….....1 1.1 微量元素分析在環境與生物體研究上的重要性……………………………………...1 1.2 微量元素分析技術的發展…………..………………………………………………....6 1.2.1 生物與環境樣品分析系統的需求…………………………………………..……...6 1.2.2 化學蒸氣生成技術的發展……………………………………………………….....9 1.2.3 微量元素物種分離技術…………………………………………………………...17 1.3 研究目的……………………………………………………………………………….19 第二章 儀器分析及方法原理………………………………………………………………...22 2.1 感應耦合電漿質譜儀………………………………………………………………….22 2.1.1 樣品傳輸系統 (sample introduction system)………………………………...…..23 2.1.2 感應耦合電漿離子源 (inductively coupled plasma)………………………….....25 2.1.3 取樣介面 (sampling interface)……………………………………………….…..28 2.1.4 真空系統 (vacuum system)…………………………………….…………………29 2.1.5 離子透鏡組 (ion lens system)…………………………………………………….29 2.1.6 四極柱質量分析器 (quadrupole mass analyzer)……………………...………….32 2.1.7 離子偵檢器 (ion detector)………………………………………………………..33 2.2 高效能液相層析技術………………………………………………………………….35 2.3 披覆式微流體晶片型奈米光觸媒輔助蒸氣生成裝置工作原理與製作…………….39 2.3.1 奈米光觸媒輔助還原蒸氣生成法工作原理……………………………………...39 2.3.2 披覆式微流體晶片型奈米二氧化鈦光觸媒輔助蒸氣生成裝置………………...45 2.4 微透析取樣技術……………………………………………………………………….50 第三章 建立連線分析系統進行活體動物腦部組織細胞間液汞濃度動態變化監測之分析研究……………………………………….…..............................................................................53 3.1 導論…………………………………………………………………………………….53 3.2 實驗部分……………………………………………………………………………….66 3.2.1 儀器裝置…………………………………………………………………………66 3.2.2 藥品與試劑………………………………………………………………………67 3.2.3 實驗環境及容器清洗……………………………………………………………68 3.2.4 實驗動物之基本資料與實驗前準備……………………………………………69 3.2.5 微透析探針之調態、清洗與保存………………………………………………70 3.2.6 微透析取樣效率之計算…………………………………………………………...70 3.2.7 等滲透壓溶液之配製與純化……………………………………………………72 3.2.8 披覆式微流體晶片型奈米光觸媒輔助蒸氣生成裝置製作……………………...73 3.3 奈米二氧化鈦光觸媒輔助還原反應最適化操作參數探討………………..….....…..79 3.3.1 溶液酸鹼值對於光觸媒輔助還原反應效率的影響……………………...............79 3.3.2 甲酸濃度對於光觸媒輔助還原反應效率的影響…………………………...........81 3.4 微透析取樣最適化操作參數探討…………………………………………….............83 3.4.1 微透析取樣中的灌流液流速對於分析訊號靈敏度的影響……………...............83 3.4.2 微透析取樣效率…………………………………………………………...............84 3.5 連線分析系統效能評估……………………………………………………….............86 3.5.1 連線分析系統背景訊號評估……………………………………………...............87 3.5.2 連線分析系統特性評估與方法確效……………………………………...............88 3.6 活體動物腦部組織細胞間液汞濃度動態變化監測………………………….............92 3.7 結論……………………………………………………………………………………95 第四章 建立連線分析系統進行自然水體中汞物種之分析研究……...................................96 4.1 導論…………………………………………………………………………………….96 4.2 實驗部分……………………………………………………………………………..100 4.2.1 儀器裝置…………………………………………………..……………………...100 4.2.2 藥品與試劑……………………………………………………………………….101 4.2.3 實驗環境及容器清洗………………………………………………………….…102 4.2.4 層析管柱之調態、清洗與保存………………………………………………...…103 4.2.5 披覆式微流體晶片型奈米光觸媒輔助蒸氣生成裝置製作………………….....103 4.3 汞物種液相層析分離最適化操作參數探討……………………………………...…104 4.3.1 動相溶液流速對於層析分離效果的影響……………………………….............106 4.3.2 溶液酸鹼值對於層析分離效果的影響………………………………….............107 4.3.3 L-cysteine濃度對於層析分離效果的影響………………………………………109 4.3.4 2-mercaptoethanol濃度對於層析分離效果的影響……………………………...110 4.3.5 甲醇濃度對於層析分離效果的影響………………………………...…………..111 4.4 奈米光觸媒輔助還原反應最適化操作參數探討……………………………...........113 4.4.1 甲酸濃度對於光觸媒輔助還原反應效率的影響……………………….............113 4.4.2 溶液酸鹼值對於光觸媒輔助還原反應效率的影響……………...…………..…114 4.5 連線分析系統效能評估……………………………………………..…………….…117 4.5.1 連線分析系統長時間穩定性評估…………………………………..…………...117 4.5.2 連線分析系統特性評估與方法確效…………………………………….............118 4.5.3 分析方法間效能比較…………………………………………………….............121 4.6 環境真實水樣中汞物種分析…………………………………………….…………..124 4.7 結論………………………………………………………………………...…………127 第五章 利用奈米金對於奈米二氧化鈦進行表面改質並建立連線分析系統進行自然水體中無機砷物種之分析研究……………………….……………………………………….…...128 5.1 導論………………………………………………………………………………..….128 5.2 實驗部分……………………………………………………………………………...139 5.2.1 儀器裝置…………………………………………………..……………………...139 5.2.2 藥品與試劑……………………………………………………………………….140 5.2.3 實驗環境及容器清洗………………………………………………………….…142 5.2.4 層析管柱之調態、清洗與保存………………………………………………...…142 5.2.5 披覆式微流體晶片型奈米光觸媒輔助蒸氣生成裝置製作………………….....143 5.3 無機砷物種於奈米光觸媒輔助還原反應機制探討………………………………...144 5.3.1 無機砷物種在奈米二氧化鈦上的吸附作用機制探討…………….…………....144 5.3.2 奈米二氧化鈦對於無機砷物種的還原反應機制探討…………….………....146 5.3.3 奈米複合材料對於光觸媒輔助還原反應效率的影響探討………...……..…148 5.4 披覆試劑組成最適化參數探討……………………………………………...………152 5.5 線上前還原反應最適化參數探討……………………………………………...........159 5.5.1 前還原反應試劑的種類對於還原效率的影響………………………….............159 5.5.2 Na2S2O4與砷的前還原反應機制探討………………………....………...............163 5.5.3 前還原反應溶液酸鹼值對於砷還原效率的影響………………………..……...165 5.5.4 前還原試劑Na2S2O4的濃度對於砷還原效率的影響…………………..............167 5.6 奈米光觸媒輔助還原反應最適化操作參數探討……………………………...........170 5.6.1 電洞移除劑的種類對於光觸媒輔助還原反應效率的影響…………...………..170 5.6.2 溶液酸鹼值對於光觸媒輔助還原反應效率的影響………………………….....171 5.6.3 甲酸濃度對於光觸媒輔助還原反應效率的影響……………………….............173 5.7 無機砷物種液相層析分離最適化操作參數探討…………………………………..174 5.7.1 利用共存離子改善訊號拖尾現象之研究探討………………………….............174 5.7.2 動相溶液酸鹼值與離子強度對於物種流洗時間的影響……………….............177 5.8 游離增強試劑最適化濃度探討………………………………………………...........180 5.9 連線分析系統效能評估…………………………………………………..…….……182 5.9.1 連線分析系統長時間穩定性評估………………………………….…………....182 5.9.2 樣品基質干擾測試……………………………………………………….............183 5.9.3 連線分析系統特性評估與方法確效……………………………...……………..184 5.9.4 分析方法間效能比較…………………………………………………...………..185 5.10 環境樣品中無機砷物種分析………………………………………………...…..…..188 5.11 結論….…………………………………………………………………...…………...189 第六章 結語………………………………………………………………………………….190 第七章 參考文獻……………………………………………………………………………194 附錄 論文口試審查委員意見修正情形一覽………………………………………………...225

    (1) 陳靜生 水環境化學; 曉園出版社: 臺北, 1992.
    (2) Aaseth, J.; Gerhardsson, L.; Skaug, M. A.; Alexander, J. General Chemistry of Metal Toxicity and Basis for Metal Complexation; Elsevier: Amsterdam, 2016.
    (3) Algeo, T. J.; Maynard, J. B. Trace-element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-type. Cyclothems Chem. Geol. 2004, 206, 289–318.
    (4) Cojan, I.; Renard, M.; Emmanuel, L. Palaeoenvironmental Reconstruction of Dinosaur Nesting Sites Based on a Geochemical Approach to Eggshells and Associated Palaeosols (Maastrichtian, Provence Basin, France). Paleogeogr. Paleoclimatol. Paleoecol. 2003, 191, 111–138.
    (5) Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and Toxicity of Cadmium to Microorganisms and their Activities in Soil: a Review. Adv. Environ. Res. 2003, 8, 121–135.
    (6) Gammelgaard, B.; Bendahl, L.; Sidenius, U.; Jøns, O. Selenium Speciation in Urine by Ion-pairing Chromatography with Perfluorinated Carboxylic Acids and ICP-MS Detection. J. Anal. At. Spectrom. 2002, 17, 570–575.
    (7) International Agency for Research on Cancer. Arsenic and Arsenic Compounds. IARC Monographs 2012, 100C, 41–93.
    (8) Harada, M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol. 1995, 25, 1–24.
    (9) Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, D. G.; Hoekstra, W. G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590.
    (10) Smedley, P. L.; Kinniburgh, D. G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568.
    (11) Hung, D. Q.; Nekrassova, O.; Compton, R. G. Analytical Methods for Inorganic Arsenic in Water: A Review. Talanta 2004, 64, 269–277.
    (12) Integrated Risk Information System. Methylmercury (MeHg), CASRN 22967-92-6; U. S. Environmental Protection Agency: Washington, 2001.
    https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=73 (accessed Sep, 2021)
    (13) U. S. Environmental Protection Agency. National Primary Drinking Water Regulations; U. S. Environmental Protection Agency: Washington, 2009.
    https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed Sep, 2021)
    (14) 行政院環境保護署 飲用水水質標準; 行政院環境保護署: 臺北, 2017.
    https://oaout.epa.gov.tw/law/EngLawList.aspx?id=FL015512 (accessed Sep, 2021)
    (15) Council of the European Union. On the Quality of Water Intended for Human Consumption, Council Directive 98/83/EC; Council of the European Union: Brussels, 2015.
    http://data.europa.eu/eli/dir/1998/83/2015-10-27 (accessed Sep, 2021)
    (16) Ministry of Health, Labour and Welfare. Drinking Water Quality Standards; Ministry of Health, Labour and Welfare: Tokyo, 2015.
    https://www.mhlw.go.jp/english/policy/health/water_supply/dl/4a.pdf (accessed Sep, 2021)
    (17) Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the Determination and Speciation of Mercury in Natural Waters–A Review. Anal. Chim. Acta 2010, 663, 127–138.
    (18) Mason, R. P.; Fitzgerald, W. F. The Distribution and Biogeochemical Cycling of Mercury in the Equatorial Pacific Ocean. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 1993, 40, 1897–1924.
    (19) Mason, R. P.; Fitzgerald, W. F.; Hurley, J.; Hanson, A. K.; Donaghay, P. L.; Sieburth, J. M. Mercury Biogeochemical Cycling in a Stratified Estuary. Limnol. Oceanogr. 1993, 38, 1227–1241.
    (20) Mason, R. P.; Rolfhus, K. R.; Fitzgerald, W. F. Mercury in the North Atlantic. Mar. Chem. 1998, 61, 37–53.
    (21) Ullrich, S. M.; Tanton, T. W.; Abdrashitova, S. A. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293.
    (22) Mason, R. P.; Laporte, J.-M.; Andres, S. Factors Controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish. Arch. Environ. Contam. Toxicol. 2000, 38, 283–297.
    (23) Buckman, K.; Taylor, V.; Broadley, H.; Hocking, D.; Balcom, P.; Mason, R.; Nislow, K.; Chen, C. Methylmercury Bioaccumulation in an Urban Estuary: Delaware River, USA. Estuaries Coasts 2017, 40, 1358–1370.
    (24) Outridge, P. M.; Mason, R. P.; Wang, F.; Guerrero, S.; Heimbürger-Boavida, L. E. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477.
    (25) Wang, F.; Outridge, P. M.; Feng, X.; Meng, B.; Heimbürger-Boavida, L.-E.; Mason, R. P. How Closely Do Mercury Trends in Fish and other Aquatic Wildlife Track those in the Atmosphere? – Implications for Evaluating the Effectiveness of the Minamata Convention. Sci. Total Environ. 2019, 674, 58–70.
    (26) Anatone, K.; Baumann, Z.; Mason, R. P.; Hansen, G.; Chernoff, B. Century-old Mercury Pollution: Evaluating the Impacts on Local Fish from the Eastern United States. Chemosphere 2020, 259, 127484.
    (27) Mason, R. P. Grand Challenge for Frontiers in Environmental Chemistry–Inorganic Pollutants. Front. Environ. Chem. 2020, 1, 2.
    (28) Clarkson, T. W.; Vyas, J. B.; Ballatori, N. Mechanism of Mercury Disposition in the Body. Am. J. Ind. Med. 2007, 50, 757–764.
    (29) Rodrigues, J. L.; Serpeloni, J. M.; Batista, B. L.; Souza, S. S.; Jr., Barbosa, F. Identification and Distribution of Mercury Species in Rat Tissues following Administration of Thimerosal or Methylmercury. Arch. Toxicol. 2010, 84, 891–896.
    (30) Barregard, L.; Rekić, D.; Horvat, M.; Elmberg, L.; Lundh, T.; Zachrisson, O. Toxicokinetics of Mercury after Long-term Repeated Exposure to Thimerosal-containing Vaccine. Toxicol. Sci. 2011, 120, 499–506.
    (31) Clarkson, T. W. The Three Modern Faces of Mercury. Environ. Health Perspect. 2002, 110, 11–23.
    (32) Lohren, H.; Bornhorst, J.; Fitkau, R.; Pohl, G.; Galla, H.-J.; Schwerdtle, T. Effects on and Transfer across the Bloodbrain Barrier in Vitro—Comparison of Organic and Inorganic Mercury Species. BMC Pharmacol. Toxicol. 2016, 17, 63.
    (33) Yu, C.; Cai, Q.; Guo, Z.-X.; Yang, Z.; Khoo, S. B. Inductively Coupled Plasma Mass Spectrometry Study of the Retention Behavior of Arsenic Species on Various Solid Phase Extraction Cartridges and Its Application in Arsenic Speciation. Spectroc. Acta Pt. B-Atom. Spectr. 2003, 58, 1335–1349.
    (34) Huang, C.; Xie, W.; Li, X.; Zhang, J. Speciation of Inorganic Arsenic in Environmental Waters Using Magnetic Solid Phase Extraction and Preconcentration followed by ICP-MS. Microchim. Acta 2011, 173, 165–172.
    (35) Morita, Y.; Kobayashi, T.; Kuroiwa, T.; Narukawa, T. Study on Simultaneous Speciation of Arsenic and Antimony by HPLC–ICP-MS. Talanta 2007, 73, 81–86.
    (36) Chen, L. W. L.; Lu, W.; Le, X. C. Complementary Chromatography Separation Combined with Hydride Generation–Inductively Coupled Plasma Mass Spectrometry for Arsenic Speciation in Human Urine. Anal. Chim. Acta 2010, 675, 71–75.
    (37) de Souza, S. S.; Campiglia, A. D.; Barbosa, F., Jr. A Simple Method for Methylmercury, Inorganic Mercury and Ethylmercury Determination in Plasma Samples by High Performance Liquid Chromatography-Cold-Vapor-Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2013, 761, 11–17.
    (38) Jagtap, R.; Maher, W. Measurement of Mercury Species in Sediments and Soils by HPLC–ICPMS. Microchem. J. 2015, 121, 65–98.
    (39) Tuzen, M; Çɪtak, D.; Mendil, D.; Soylak, M. Arsenic Speciation in Natural Water Samples by Coprecipitation-Hydride Generation Atomic Absorption Spectrometry Combination. Talanta 2009, 78, 52–56.
    (40) Qvarnström, J.; Tu, Q.; Frech, W.; Lüdke, C. Flow Injection-Liquid Chromatography-Cold Vapour Atomic Absorption Spectrometry for Rapid Determination of Methyl and Inorganic Mercury. Analyst 2000, 125, 1193–1197.
    (41) Yuan, C.-G.; He, B.; Gao, E.-L.; Lü, J.-X.; Jiang, G.-B. Evaluation of Extraction Methods for Arsenic Speciation in Polluted Soil and Rotten Ore by HPLC-HG-AFS Analysis. Microchim. Acta 2007, 159, 175–182.
    (42) Gómez-Ariza, J. L.; Lorenzo, F.; García-Barrera, T. Simultaneous Determination of Mercury and Arsenic Species in Natural Freshwater by Liquid Chromatography with On-line UV Irradiation, Generation of Hydrides and Cold Vapor and Tandem Atomic Fluorescence Detection. J. Chromatogr. A 2004, 1056, 139–144.
    (43) Margetínová, J.; Houserová-Pelcová, P.; Kubáň, V. Speciation Analysis of Mercury in Sediments, Zoobenthos and River Water Samples by High-Performance Liquid Chromatography Hyphenated to Atomic Fluorescence Spectrometry following Preconcentration by Solid Phase Extraction. Anal. Chim. Acta 2008, 615, 115–123.
    (44) Zhang, L.; Morita, Y.; Sakuragawa, A.; Isozaki, A. Inorganic Speciation of As(III, V), Se(IV, VI) and Sb(III, V) in Natural Water with GF-AAS using Solid Phase Extraction Technology. Talanta 2007, 72, 723–729.
    (45) Liang, P.; Peng, L.; Yan, P. Speciation of As(III) and As(V) in Water Samples by Dispersive Liquid-liquid Microextraction Separation and Determination by Graphite Furnace Atomic Absorption Spectrometry. Microchim. Acta 2009, 166, 47–52.
    (46) Amjadi, M.; Manzoori, J. L.; Taleb, Z. Reverse Micelle Coacervate-based Extraction Combined with Electrothermal Atomic Absorption Spectrometry for the Determination of Arsenic in Water and Oyster Tissue Samples. Microchim. Acta 2010, 169, 187–193.
    (47) Gil, S.; Lavilla, I.; Bendicho, C. Green Method for Ultrasensitive Determination of Hg in Natural Waters by Electrothermal-Atomic Absorption Spectrometry following Sono-induced Cold Vapor Generation and ‘In-atomizer Trapping’. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 69–75.
    (48) Hsu, I-H.; Hsu, T.-C.; Sun, Y.-C. Gold-nanoparticle-based Graphite Furnace Atomic Absorption Spectrometry Amplification and Magnetic Separation Method for Sensitive Detection of Mercuric Ions. Biosens. Bioelectron. 2011, 26, 4605–4609.
    (49) Huang, C.; Hu, B.; Jiang, Z. Simultaneous Speciation of Inorganic Arsenic and Antimony in Natural Waters by Dimercaptosuccinic Acid Modified Mesoporous Titanium Dioxide Micro-column On-line Separation and Inductively Coupled Plasma Optical Emission Spectrometry Determination. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 454–460.
    (50) Gil, R. A.; Ferrúa, N.; Salonia, J. A.; Olsina, R. A.; Martinez, L. D. On-line Arsenic Co-Precipitation on Ethyl Vinyl Acetate Turning-packed Mini-Column followed by Hydride Generation-ICP OES Determination. J. Hazard. Mater. 2007, 143, 431–436.
    (51) Kula, I.; Solak, M. H.; Uğurlu, M.; Işiloğlu, M.; Arslan, Y. Determination of Mercury, Cadmium, Lead, Zinc, Selenium and Iron by ICP-OES in Mushroom Samples from around Thermal Power Plant in Muğla, Turkey. Bull. Environ. Contam. Toxicol. 2011, 87, 276–281.
    (52) Mok, W. M.; Wai, C. M. Simultaneous Extraction of Trivalent and Pentavalent Antimony and Arsenic Species in Natural Waters for Neutron Activation Analysis. Anal. Chem. 1987, 59, 233–236.
    (53) Rasul, S. B.; Munir, A. K. M.; Hossain, Z. A.; Khan, A. H.; Alauddin, M.; Hussam, A. Electrochemical Measurement and Speciation of Inorganic Arsenic in Groundwater of Bangladesh. Talanta 2002, 58, 33–43.
    (54) Song, Y.; Swain, G. M. Total Inorganic Arsenic Detection in Real Water Samples using Anodic Stripping Voltammetry and a Gold-coated Diamond Thin-film Electrode. Anal. Chim. Acta 2007, 593, 7–12.
    (55) Dhar, R. K.; Zheng, Y.; Rubenstone, J.; van Geen, A. A Rapid Colorimetric Method for Measuring Arsenic Concentrations in Groundwater. Anal. Chim. Acta 2004, 526, 203–209.
    (56) Huang, C.-C.; Chang, H.-T. Parameters for Selective Colorimetric Sensing of Mercury(II) in Aqueous Solutions using Mercaptopropionic Acid-modified Gold Nanoparticles. Chem. Commun. 2007, 12, 1215–1217.
    (57) Sahin, D. Atomic Spectroscopy, Modern Spectroscopic Techniques and Applications; Khan, M.; do Nascimento, G. M.; El-Azazy, M. Ed.; IntechOpen: London, 2019.
    (58) Pichichero, M. E.; Gentile, A.; Giglio, N.; Alonso, M. M.; Mentaberri, M.V. F.; Zareba, G.; Clarkson, T.; Gotelli, C.; Gotelli, M.; Yan, L.; Treanor, J. Mercury Levels in Premature and Low Birth Weight Newborn Infants after Receipt of Thimerosal-containing Vaccines. J. Pediatr. 2009, 155, 495–499.e2.
    (59) Chandrasekaran, K.; BalaramaKrishna, M. V.; Karunasagar, D. On-line Speciation of Inorganic Arsenic in Natural Waters using Polyaniline (PANI) with Determination by Flow Injection-Hydride Generation-Inductively Coupled Plasma Mass Spectrometry at Ultra-trace Levels. J. Anal. At. Spectrom. 2010, 25, 1348–1353.
    (60) Huang, C.; Hu, B.; Jiang, Z. Simultaneous Speciation of Inorganic Arsenic and Antimony in Natural Waters by Dimercaptosuccinic Acid Modified Mesoporous Titanium Dioxide Micro-column On-line Separation and Inductively Coupled Plasma Optical Emission Spectrometry Determination. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 454–460.
    (61) Mladenova, E. K.; Dakova, I. G.; Karadjova, I. B. Chitosan Membranes as Sorbents for Trace Elements Determination in Surface Waters. Environ. Sci. Pollut. Res. 2011, 18, 1633–1643.
    (62) Amara-Rekkab, A.; Didi, M. A. Design Optimization of Extraction Procedure for Mercury (II) using Chelex 100 Resin. Desalin. Water Treat. 2016, 57, 6950–6958.
    (63) Castor, J. M. R.; Portugal, L.; Ferrer, L.; Hinojosa-Reyes, L.; Guzmán-Mar, J. L.; Hernández-Ramírez, A.; Cerdà, V. An Evaluation of the Bioaccessibility of Arsenic in Corn and Rice Samples Based on Cloud Point Extraction and Hydride Generation Coupled to Atomic Fluorescence Spectrometry. Food Chem. 2016, 204, 475–482.
    (64) Wen, S.; Zhu, X. Speciation of Inorganic Arsenic(III) and Arsenic(V) by a Facile Dual-Cloud Point Extraction Coupled with Inductively Plasma-Optical Emission Spectrometry. Talanta 2018, 181, 265–270.
    (65) Thongsaw, A.; Sananmuang, R.; Udnan, Y.; Ross, G. M.; Chaiyasith, W. C. Dual-cloud Point Extraction for Speciation of Mercury in Water and Fish Samples by Electrothermal Atomic Absorption Spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2019, 160, 454–460.
    (66) Xie, M.; Hao, X.; Jiang, X.; Liu, W.; Liu, T.; Zheng, H.; Wang, M. Ultrasound-assisted Dual-cloud Point Extraction with High-performance Liquid Chromatography-Hydride Generation Atomic Fluorescence Spectrometry for Mercury Speciation Analysis in Environmental Water and Soil Samples. J. Sep. Sci. 2021, ASAP. https://doi.org/10.1002/jssc.202100088.
    (67) Gil, R. A.; Ferrúa, N.; Salonia, J. A.; Olsina, R. A.; Martinez, L. D. On-line Arsenic Co-precipitation on Ethyl Vinyl Acetate Turning-packed Mini-column followed by Hydride Generation-ICP OES Determination. J. Hazard. Mater. 2007, 143, 431–436.
    (68) de la Calle, I.; Páez-Cabaleiro, J.; Lavilla, I.; Bendicho, C. One-pot Synthesis of a Magnetic Nanocomposite based on Ultrasound-assisted Co-precipitation for Enrichment of Hg(II) prior to Detection by a Direct Mercury Analyzer. Talanta 2019, 199, 449–456.
    (69) Amjadi, M.; Manzoori, J. L.; Taleb, Z. Reverse Micelle Coacervate-based Extraction Combined with Electrothermal Atomic Absorption Spectrometry for the Determination of Arsenic in Water and Oyster Tissue Samples. Microchim. Acta 2010, 169, 187–193.
    (70) Roy, K.; Lahiri, S. Extraction of Hg(I), Hg(II) and Methylmercury using Polyethylene Glycol based Aqueous Biphasic System. Appl. Radiat. Isot. 2009, 67, 1781–1784.
    (71) Sturgeon, R. E.; Guo, X.; Mester, Z. Chemical Vapor Generation: Are Further Advances Yet Possible? Anal. Bioanal. Chem. 2005, 382, 881–883.
    (72) He, Y.; Hou, X.; Zheng, C.; Sturgeon, R. E. Critical Evaluation of the Application of Photochemical Vapor Generation in Analytical Atomic Spectrometry. Anal. Bioanal. Chem. 2007, 388, 769–774.
    (73) D’Ulivo, A.; Dědina, J.; Mester, Z.; Sturgeon, R. E.; Wang, Q.; Welz, B. Mechanisms of Chemical Generation of Volatile Hydrides for Trace Element Determination (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1283–1340.
    (74) Gao, Y.; Liu, R.; Yang, L. Application of Chemical Vapor Generation in ICP-MS: A Review Chin. Sci. Bull. 2013, 58, 1980–1991.
    (75) Zhai, G.; Liu, J.; Li, L.; Cui, L.; He, B.; Zhou, Q.; Jiang, G. Rapid and Direct Speciation of Methyltins in Seawater by an On-line Coupled High Performance Liquid Chromatography–Hydride Generation–ICP/MS System. Talanta 2009, 77, 1273−1278.
    (76) Guo, X.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J. UV Vapor Generation for Determination of Selenium by Heated Quartz Tube Atomic Absorption Spectrometry. Anal. Chem. 2003, 75, 2092−2099.
    (77) Howard, A. G. (Boro)Hydride Techniques in Trace Element Speciation. J. Anal. At. Spectrom. 1997, 12, 267−272.
    (78) He, Y.; Moreda-Piñeiro, J.; Cervera, M. L.; de la Guardia, M. Direct Determination of Dissolved Selenium (VI) and Selenium (VI) in Sea-Water by Continuous Flow Hydride Generation Atomic Fluorescence Spectrometry. J. Anal. At. Spectrom. 1998, 13, 289−293.
    (79) Liang, P.; Li, A. Determination of Arsenic by Continuous Hydride Generation with Direct Introduction into an O2-Argon Microwave Plasma Torch Atomic Emission Spectrometer. Fresenius J. Anal. Chem. 2000, 368, 418−420.
    (80) Sun, Y.-C.; Chen, Y.-J.; Tsai, Y.-N. Determination of Urinary Arsenic Species using an On-line Nano-TiO2 Photooxidation Device Coupled with Microbore LC and Hydride Generation-ICP-MS System. Microchem. J. 2007, 86, 140−145.
    (81) Guo, X.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J. Vapor Generation by UV Irradiation for Sample Introduction with Atomic Spectrometry. Anal. Chem. 2004, 76, 2401−2405.
    (82) Zheng, C.; Li, Y.; He, Y.; Ma, Q.; Hou, X. Photo-induced Chemical Vapor Generation with Formic Acid for Ultrasensitive Atomic Fluorescence Spectrometric Determination of Mercury: Potential Application to Mercury Speciation in Water. J. Anal. At. Spectrom. 2005, 20, 746–750.
    (83) Li, Y; Zheng, C.; Ma, Q.; Wu, L.; Hu, C.; Hou, X. Sample Matrix-assisted Photo-induced Chemical Vapor Generation: A Reagent Free Green Analytical Method for Ultrasensitive Detection of Mercury in Wine or Liquor Samples. J. Anal. At. Spectrom. 2006, 21, 82–85.
    (84) Zheng, C.; Ma, Q.; Wu, L.; Hou, X.; Sturgeon, R. E. UV Photochemical Vapor Generation–Atomic Fluorescence Spectrometric Determination of Conventional Hydride Generation Elements. Microchem. J. 2010, 95, 32–37.
    (85) Kikuchi, E.; Sakamoto, H. Kinetics of the Reduction Reaction of Selenate Ions by TiO2 Photocatalyst. J. Electrochem. Soc. 2000, 147, 4589–4593.
    (86) Tan, T. T. Y.; Zaw, M.; Beydoun, D.; Amal, R. The Formation of Nano-sized Selenium–Titanium Dioxide Composite Semiconductors by Photocatalysis. J. Nanopart. Res. 2002, 4, 541–552.
    (87) Tan, T. T. Y.; Beydoun D.; Amal, R. Photocatalytic Reduction of Se(VI) in Aqueous Solutions in UV/TiO2 System: Importance of Optimum Ratio of Reactants on TiO2 Surface. J. Mol. Catal. A Chem. 2003, 202, 73–85.
    (88) Sun, Y.-C.; Chang, Y.-C.; Su, C.-K. On-line HPLC-UV/Nano-TiO2-ICPMS System for the Determination of Inorganic Selenium Species. Anal. Chem. 2006, 78, 2640–2645.
    (89) Tsai, Y.-N.; Lin, C.-H.; Hsu, I-H.; Sun, Y.-C. Sequential Photocatalyst-assisted Digestion and Vapor Generation Device Coupled with Anion Exchange Chromatography and Inductively Coupled Plasma Mass Spectrometry for Speciation Analysis of Selenium Species in Biological Samples. Anal. Chim. Acta 2014, 806, 165–171.
    (90) Yin, Y.; Liang, J.; Yang, L.; Wang, Q. Vapour Generation at a UV/TiO2 Photocatalysis Reaction Device for Determination and Speciation of Mercury by AFS and HPLC-AFS. J. Anal. At. Spectrom. 2007, 22, 330–334.
    (91) Chen, K.-J.; Hsu, I-H.; Sun, Y.-C. Determination of Methylmercury and Inorganic Mercury by Coupling Short-column Ion Chromatographic Separation, On-line Photocatalyst-Assisted Vapor Generation, and Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2009, 1216, 8933–8938.
    (92) Levy, I. K.; Mizrahi, M.; Ruano, G.; Zampieri, G.; Requejo, F. G.; Litter, M. I. TiO2-Photocatalytic Reduction of Pentavalent and Trivalent Arsenic: Production of Elemental Arsenic and Arsine. Environ. Sci. Technol. 2012, 46, 2299−2308.
    (93) Shih, T.-T.; Lin, C.-H.; Hsu, I-H.; Chen, J.-Y.; Sun, Y.-C. Development of a Titanium Dioxide-Coated Microfluidic-Based Photocatalyst-Assisted Reduction Device to Couple High Performance Liquid Chromatography with Inductively Coupled Plasma-Mass Spectrometry for Determination of Inorganic Selenium Species. Anal. Chem. 2013, 85, 10091−10098.
    (94) Guerin, T.; Molenat, N.; Astruc, A.; Pinel, R. Arsenic Speciation in Some Environmental Samples: A Comparative Study of HG–GC–QFAAS and HPLC–ICP–MS Methods. Appl. Organomet. Chem. 2000, 14, 401−410.
    (95) Stoichev, T.; Rodriguez Martin-Doimeadios, R. C.; Tessier, E.; Amouroux, D.; Donard, O. F. X. Improvement of Analytical Performances for Mercury Speciation by On-line Derivatization, Cryofocussing and Atomic Fluorescence Spectrometry. Talanta 2004, 62, 433–438.
    (96) Jackson, B.; Taylor, V.; Baker, R. A.; Miller, E. Low-level Mercury Speciation in Freshwaters by Isotope Dilution GC-ICP-MS. Environ. Sci. Technol. 2009, 43, 2463–2469.
    (97) Arslan, Y., Yildirim, E.; Gholami, M.; Bakirdere, S. Lower Limits of Detection in Speciation Analysis by Coupling High-performance Liquid Chromatography and Chemical-vapor Generation. Trac-Trends Anal. Chem. 2011, 30, 569−585.
    (98) Chiou, C.-S.; Jiang, S.-J.; Suresh Kumar Danadurai, K. Determination of Mercury Compounds in Fish by Microwave-assisted Extraction and Liquid Chromatography-Vapor Generation-Inductively Coupled Plasma Mass Spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2001, 56, 1133–1142.
    (99) Kitagawa, F.; Shiomi, K.; Otsuka, K. Analysis of Arsenic Compounds by Capillary Electrophoresis using Indirect UV and Mass Spectrometric Detections. Electrophoresis 2006, 27, 2233−2239.
    (100) Kubáň, P.; Houserová, P.; Kubáň, P.; Hauser, P. C.; Kubáň, V. Mercury Speciation by CE: A Review. Electrophoresis 2007, 28, 58–68.
    (101) Sánchez-Rodas, D.; Corns, W. T.; Chen, B.; Stockwell, P. B. Atomic Fluorescence Spectrometry: A Suitable Detection Technique in Speciation Studies for Arsenic, Selenium, Antimony and Mercury. J. Anal. At. Spectrom. 2010, 25, 933–946.
    (102) Kerper, L. E.; Ballatori, N.; Clarkson, T. W. Methylmercury Transport across the Blood-brain Barrier by an Amino Acid Carrier. Am. J. Physiol. 1992, 262, R761–R765.
    (103) Simmons-Willis, T. A.; Koh, A. S.; Clarkson, T. W.; Ballatori, N. Transport of a Neurotoxicant by Molecular Mimicry: The Methylmercury–L-cysteine Complex is a Substrate for Human L-type Large Neutral Amino Acid Transporter (LAT) 1 and LAT2. Biochem. J. 2002, 367, 239–246.
    (104) Bridges, C. C.; Zalups, R. K. Molecular and Ionic Mimicry and the Transport of Toxic Metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308.
    (105) Yang, C.-S.; Chou, S.-T.; Lin, N.-N.; Liu, L.; Tsai, P.-J.; Kuo, J.-S.; Lai, J.-S. Determination of Extracellular Glutathione in Rat Brain by Microdialysis and High-performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 1994, 661, 231–235.
    (106) Su, C.-K.; Sun, Y.-C.; Tzeng, S.-F.; Yang, C.-S.; Wang, C.-Y.; Yang, M.-H. In Vivo Monitoring of the Transfer Kinetics of Trace Elements in Animal Brains with Hyphenated Inductively Coupled Plasma Mass Spectrometry Techniques. Mass Spectrom. Rev. 2010, 29, 392–424.
    (107) Chen, Y.-W.; Belzile, N. High Performance Liquid Chromatography coupled to Atomic Fluorescence Spectrometry for the Speciation of the Hydride and Chemical Vapour-forming Elements As, Se, Sb and Hg: A Critical Review. Anal. Chim. Acta 2010, 671, 9–26.
    (108) Jarvis, K. E.; Gray, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma Mass Spectrometry; Blackie: Glasgow, U.K., 1992.
    (109) Todolí, J.-L.; Maestre, S.; Mora, J.; Canals, A.; Hernandis, V. Comparison of Several Spray Chambers Operating at Very Low Flow Rates in Inductively Coupled Plasma Atomic Emission Spectrometry. Fresenius J. Anal. Chem. 2000, 368, 773–779.
    (110) Taylor, H. E., Inductively Coupled Plasma-Mass Spectrometry: Practices and Techniques, 1st ed.; Academic Press: USA, 2000.
    (111) Agilent Technologies. Agilent 7500 Series ICP-MS: CE Handbook; Agilent Technologies: USA, 2006.
    (112) Niu, H.; Houk, R. S. Fundamental Aspects of Ion Extraction in Inductively Coupled Plasma Mass Spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 1996, 51, 779–815.
    (113) Hu, K.; Clemons, P. S.; Houk, R. S. Inductively Coupled Plasma Mass Spectrometry with an Enlarged Sampling Orifice and Offset Ion Lens. I. Ion Trajectories and Detector Performance. J. Am. Sot. Mass Spectrom. 1993, 4, 16–27.
    (114) Hu, K.; Houk, R. S. Inductively Coupled Plasma Mass Spectrometry with an Enlarged Sampling Orifice and Offset Ion Lens. II. Polyatomic Ion Interferences and Matrix Effects. J. Am. Sot. Mass Spectrom. 1993, 4, 28–37.
    (115) Skoog, D. A.; Crouch, S. R.; Holler, F. J. Principles of Instrumental Analysis, 6th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2007.
    (116) Robards, K.; Starr, P.; Patsalides, E., Metal determination and metal speciation by liquid chromatography. A review. Analyst 1991, 116, 1247–1273.
    (117) International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology-Gold Book, 2nd ed., version 2.3.3; IUPAC: North Carolina, 2014.
    (118) Litter, M. I. Heterogeneous Photocatalysis: Transition Metal Ions in Photocatalytic Systems. Appl. Catal. B-Environ. 1999, 23, 89–114.
    (119) Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.
    (120) Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene. Appl. Catal. A-Gen. 2003, 244, 383–391.
    (121) Sun, B.; Smirniotis, P. G. Interaction of Anatase and Rutile TiO2 Particles in Aqueous Photooxidation. Catal. Today 2003, 88, 49–59.
    (122) Fernández-Ibáñez, P.; de las Nieves, F. J.; Malato, S. Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena. J. Colloid Interface Sci. 2000, 227, 510–516.
    (123) Dutta, P. K.; Ray, A. K.; Sharma, V. K.; Millero, F. J. Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions. J. Colloid Interface Sci. 2004, 278, 270–275.
    (124) Wang, K.-H.; Hsieh, Y.-H.; Chen, L.-J. The Heterogeneous Photocatalytic Degradation, Intermediates and Mineralization for the Aqueous Solution of Cresols and Nitrophenols. J. Hazard. Mater. 1998, 59, 251–260.
    (125) Spanos, N.; Georgiadou, I.; Lycourghiotis, A. Investigation of Rutile, Anatase, and Industrial Titania/Water Solution Interfaces using Potentiometric Titration and Microelectrophoresis. J. Colloid Interface Sci. 1995, 172, 374–382.
    (126) Tan, T.; Beydoun, D.; Amal, R. Effects of Organic Hole Scavengers on the Photocatalytic Reduction of Selenium Anions. J. Photochem. Photobiol. A-Chem. 2003, 159, 273–280.
    (127) Linsebigler, A. L.; Lu, G.; Yates, T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758.
    (128) Mills, A.; Hunte, S. L. An Overview of Semiconductor Photocatalysis. J. Photochem. Photobiol. A-Chem. 1997, 108, 1–35.
    (129) Ismail, A. A.; Al-Sayari, S. A.; Bahnemann, D. W. Photodeposition of Precious Metals onto Mesoporous TiO2 Nanocrystals with Enhanced Their Photocatalytic Activity for Methanol Oxidation. Catal. Today 2013, 209, 2–7.
    (130) Languer, M. P.; Scheffer, F. R.; Feil, A. F.; Baptista, D. L.; Migowski, P.; Machado, G. J.; de Moraes, D. P.; Dupont, J.; Teixeira, S. R.; Weibel, D. E. Photo-induced Reforming of Alcohols with Improved Hydrogen Apparent Quantum Yield on TiO2 Nanotubes Loaded with Ultra-small Pt Nanoparticles. Int. J. Hydrog. Energy 2013, 38, 14440–14450.
    (131) Baldovi, H. G.; Albarracin, F.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H. Visible-light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study. ChemPhysChem 2015, 16, 335–341.
    (132) Mogyorósi, K.; Kmetykó, Á.; Czirbus, N.; Veréb, G.; Sipos, P.; Dombi, A. Comparison of the Substrate Dependent Performance of Pt-, Au- and Ag-doped TiO2 Photocatalysts in H2-Production and in Decomposition of Various Organics. React. Kinet. Catal. Lett. 2009, 98, 215–225.
    (133) Jakob, M.; Levanon, H.; Kamat, P. V. Charge Distribution between UV-irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Lett. 2003, 3, 353−358.
    (134) Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950.
    (135) Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka H. Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. J. Photochem. Photobiol. A-Chem. 1995, 85, 247–255.
    (136) Vamathevan, V.; Tse, H.; Amal, R.; Low, G.; McEvoy, S. Effects of Fe3+ and Ag+ Ions on the Photocatalytic Degradation of Sucrose in Water. Catal. Today 2001, 68, 201–208.
    (137) Manz, A.; Graber, N.; Widmer, H. M. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing. Sens. Actuator B-Chem. 1990, 1, 244–248.
    (138) 方肇倫 微流控分析芯片的製作及應用; 化學工業出版社: 北京, 2005.
    (139) 陳忠斌 生物晶片技術; 化學工業出版社: 北京, 2005.
    (140) Shih, T.-T.; Hsu, I-H.; Wu, J.-F.; Lin, C.-H.; Sun, Y.-C. Development of Chip-based Photocatalyst-assisted Reduction Device to Couple High Performance Liquid Chromatography and Inductively Coupled Plasma-Mass Spectrometry for Determination of Inorganic Selenium Species. J. Chromatogr. A 2013, 1304, 101–108.
    (141) 陳忠輝; 楊凱喬 奈米複合材料在印刷之應用與發展. 印刷科技 2006, 22, 40–56.
    (142) Klank, H.; Kutter, J. P.; Geschke, O. CO2-laser Micromachining and Back-end Processing for Rapid Production of PMMA-based Microfluidic Systems. Lab Chip 2002, 2, 242–246.
    (143) Wang, Q.; Liang, J.; Qiu, J.; Huang, B. Online Pre-reduction of Selenium(VI) with a Newly Designed UV/TiO2 Photocatalysis Reduction Device. J. Anal. At. Spectrom. 2004, 19, 715–716.
    (144) Tsai, M.-W.; Sun, Y.-C. On-line Coupling of an Ultraviolet Titanium Dioxide Film Reactor with a Liquid Chromatography/Hydride Generation/Inductively Coupled Plasma Mass Spectrometry System for Continuous Determination of Dynamic Variation of Hydride- and Nonhydride-Forming Arsenic Species in Very Small Microdialysate Samples. Rapid Commun. Mass Spectrom. 2008, 22, 211–216.
    (145) Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997, 277, 1232–1237.
    (146) Katayama, H.; Ishihama, Y.; Asakawa, N. Stable Capillary Coating with Successive Multiple Ionic Polymer Layers. Anal. Chem. 1998, 70, 2254–2260.
    (147) Katayama, H.; Ishihama, Y.; Asakawa, N. Stable Cationic Capillary Coating with Successive Multiple Ionic Polymer Layers for Capillary Electrophoresis. Anal. Chem. 1998, 70, 5272–5277.
    (148) Shih, T.-T.; Chen, W.-Y.; Sun, Y.-C. Open-channel Chip-based Solid-phase Extraction Combined with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Trace Elements in Volume-limited Saline Samples. J. Chromatogr. A 2011, 1218, 2342–2348.
    (149) Jeon, Y.-M.; Gong, M.-S.; Cho, H.-N. Preparation of Silver/PMMA Beads via the In Sito Reduction of a Silver Alkylcarbamate Complex. Macromol. Res. 2009, 17, 2–4.
    (150) Van Wanseele, Y.; De Prins, A.; De Bundel, D.; Smolders, I.; Van Eeckhaut, A. Challenges for the in vivo Quantification of Brain Neuropeptides using Microdialysis Sampling and LC–MS. Bioanalysis 2016, 8, 1965–1985.
    (151) Yang, C.-S.; Chou, S.-T.; Lin, N.-N.; Liu, L.; Tsai, P.-J.; Kuo, J.-S.; Lai, J.-S. Determination of Extracellular Glutathione in Rat Brain by Microdialysis and High-performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 1994, 661, 231–235.
    (152) Su, C.-K.; Sun, Y.-C.; Tzeng, S.-F.; Yang, C.-S.; Wang, C.-Y.; Yang, M.-H. In vivo Monitoring of the Transfer Kinetics of Trace Elements in Animal Brains with Hyphenated Inductively Coupled Plasma Mass Spectrometry Techniques. Mass Spectrom. Rev. 2010, 29, 392–424.
    (153) Fox, R. H.; Hilton, S. M. Bradykinin Formation in Human Skin as a Factor in Heat Vasodilatation. J. Physiol.-London 1958, 142, 219–232.
    (154) Delgado, J. M.; Defeudis, F. V.; Roth, R. H.; Ryugo, D. K.; Mitruka, B. M. Dialytrode for Long Term Intracerebral Perfusion in Awake Monkeys. Arch. Int. Pharmacodyn. Ther. 1972, 198, 9–21.
    (155) Ungerstedt, U.; Hallström, Å. In vivo Microdialysis - A New Approach to the Analysis of Neurotransmitters in the Brain. Life Sci. 1987, 41, 861–864.
    (156) Chaurasia, C. S.; Müller, M.; Bashaw, E. D.; Benfeldt, E.; Bolinder, J.; Bullock, R.; Bungay, P. M.; DeLange, E. C. M.; Derendorf, H.; Elmquist, W. F.; Hammarlund-Udenaes, M.; Joukhadar, C.; Kellogg, D. L.; Lunte, C. E.; Nordstrom, C. H.; Rollema, H.; Sawchuk, R. J.; Cheung, B. W. Y.; Shah, V. P.; Stahle, L.; Ungerstedt, U.; Welty, D. F.; Yeo, H. AAPS-FDA Workshop White Paper: Microdialysis Principles, Application, and Regulatory Perspectives. J. Clin. Pharmacol. 2007, 47, 589–603.
    (157) Meeusen, R.; Piacentini, M. F.; De Meirleir, K. Brain Microdialysis in Exercise Research. Sports Med. 2001, 31, 965–983.
    (158) World Health Organization. Inorganic Mercury, Environmental Health Criteria 118; World Health Organization: Geneva, 1991.
    (159) Clarkson, T. W.; Magos, L. The Toxicology of Mercury and Its Chemical Compounds. Crit. Rev. Toxicol. 2006, 36, 609–662.
    (160) Agency for Toxic Substances and Disease Registry. Toxicological Profile for Mercury; US Department of Health and Human Services, Public Health Service: Atlanta, 1999.
    (161) Holmes, P.; James, K. A. F.; Levy, L. S. Is Low-level Environmental Mercury Exposure of Concern to Human Health? Sci. Total Environ. 2009, 408, 171–182.
    (162) Mason, R. P.; Rolfhus, K. R.; Fitzgerald, W. F. Mercury in the North Atlantic. Mar. Chem. 1998, 61, 37–53.
    (163) Leopold, K.; Foulkes, M.; Worsfold, P. J. Preconcentration Techniques for the Determination of Mercury Species in Natural Waters. Trac-Trends Anal. Chem. 2009, 28, 426–435.
    (164) Korbas, M.; O’Donoghue, J. L.; Watson, G. E.; Pickering, I. J.; Singh, S. P.; Myers, G. J.; Clarkson, T. W.; George, G. N. The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental Exposure. ACS Chem. Neurosci. 2010, 1, 810–818.
    (165) Grandjean, P.; Weihe, P.; White, R. F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sørensen, N.; Dahl, R.; Jørgensen, P. J. Cognitive Deficit in 7-year-old Children with Prenatal Exposure to Methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428.
    (166) Davidson, P. W.; Myers, G. J.; Cox, C.; Wilding, G. E.; Shamlaye, C. F.; Huang, L. S.; Cernichiari, E.; Sloane-Reeves, J.; Palumbo, D.; Clarkson, T. W. Methylmercury and Neurodevelopment: Longitudinal Analysis of the Seychelles Child Development Cohort. Neurotoxicol. Teratol. 2006, 28, 529–535.
    (167) Davidson, P. W.; Sloane-Reeves, J.; Myers, G. J.; Hansen, O. N.; Huang, L.-S.; Georger, L. A.; Cox, C.; Thurston, S. W.; Shamlaye, C. F.; Clarkson, T. W. Association between Prenatal Exposure to Methylmercury and Visuospatial Ability at 10.7 Years in the Seychelles Child Development Study. Neurotoxicology 2008, 29, 453–459.
    (168) Myers, G. J.; Thurston, S. W.; Pearson, A. T.; Davidson, P. W.; Cox, C.; Shamlaye, C. F.; Cernichiari, E.; Clarkson, T. W. Postnatal Exposure to Methyl Mercury from Fish Consumption: A Review and New Data from the Seychelles Child Development Study. Neurotoxicology 2009, 30, 338–349.
    (169) Agency for Toxic Substances and Disease Registry. The ATSDR 2019 Substance Priority List; U.S. Department of Health and Human Services, Public Health Service: Atlanta, 2019.
    https://www.atsdr.cdc.gov/spl/index.html (accessed Sep, 2021)
    (170) International Agency for Research on Cancer. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. IARC Monographs 1993, 58, 239–345.
    (171) Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H. Low Dose Mercury Toxicity and Human Health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360.
    (172) Rice, K. M.; Walker, E. M., Jr.; Wu, M.; Gillette, C.; Blough, E. R. Environmental Mercury and Its Toxic Effects. Journal of Preventive Medicine and Public Health 2014, 47, 74–83.
    (173) Sandborgh-Englund, G.; Elinder, C.-G.; Johanson, G.; Lind, B.; Skare, I.; Ekstrand, J. The Absorption, Blood Levels, and Excretion of Mercury after a Single Dose of Mercury Vapor in Humans. Toxicol. Appl. Pharmacol. 1998, 150, 146–153.
    (174) Magos, L.; Clarkson, T. W. Overview of the Clinical Toxicity of Mercury. Ann. Clin. Biochem. 2006, 43, 257–268.
    (175) Vahter, M.; Berglund, M.; Åkesson, A.; Lidén, C. Metals and Women's Health. Environ. Res. 2002, 88, 145–155.
    (176) Mason, R. P.; Laporte, J.-M.; Andres, S. Factors Controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish. Arch. Environ. Contam. Toxicol. 2000, 38, 283–297.
    (177) Orihel, D. M.; Paterson, M. J.; Blanchfield, P. J.; Bodaly, R. A. (Drew); Hintelmann, H. Experimental Evidence of a Linear Relationship between Inorganic Mercury Loading and Methylmercury Accumulation by Aquatic Biota. Environ. Sci. Technol. 2007, 41, 4952–4958.
    (178) World Health Organization. MethylMercury, Environmental Health Criteria 101; World Health Organization: Geneva, 1990.
    (179) Fowler, B. A.; Lucier, G. W.; Mushak, P. Phenobarbital Protection Against Methyl Mercury Nephrotoxicity (38746). Proc. Soc. Exp. Biol. Med. 1975, 149, 75–79.
    (180) Ehrenstein, C.; Shu, P.; Wickenheiser, E. B.; Hirner, A. V.; Dolfen, M.; Emons, H.; Obe, G. Methyl Mercury Uptake and Associations with the Induction of Chromosomal Aberrations in Chinese Hamster Ovary (CHO) Cells. Chem.-Biol. Interact. 2002, 141, 259–274.
    (181) Limke, T. L.; Heidemann, S. R.; Atchison, W. D. Disruption of Intraneuronal Divalent Cation Regulation by Methylmercury: Are Specific Targets Involved in Altered Neuronal Development and Cytotoxicity in Methylmercury Poisoning? Neurotoxicology 2004, 25, 741–760.
    (182) Ulfvarson, U. Distribution and Excretion of some Mercury Compounds after Long Term Exposure. Int. Arch. Gewerbepath. Gewerbehyg. 1962, 19, 412–422.
    (183) Carty, A. J.; Malone, S. F. The Chemistry of Mercury in Biological Systems; The Biogeochemistry of Mercury in the Environment, Nriagu, J. O., Ed.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1979; pp 433–459.
    (184) Xu, M.; Yang, L.; Wang, Q. Chemical Interactions of Mercury Species and some Transition and Noble Metals towards Metallothionein (Zn7MT-2) Evaluated using SEC/ICP-MS, RP-HPLC/ESI-MS and MALDI-TOF-MS. Metallomics 2013, 5, 855–860.
    (185) Blair, A. M. J. N.; Clark, B.; Clarke, A. J.; Wood, P. Tissue Concentrations of Mercury after Chronic Dosing of Squirrel Monkeys with Thiomersal. Toxicology 1975, 3, 171–176.
    (186) Kershaw, T. G.; Dhahir, P. H.; Clarkson, T. W. The Relationship between Blood Levels and Dose of Methylmercury in Man. Arch. Environ. Health 1980, 35, 28–36.
    (187) Metheson, D. S.; Clarkson, T. W.; Gelfand, E. W. Mercury Toxicity (Acrodynia) Induced by Long-term Injection of Gammaglobulin. J. Pediatr. 1980, 97, 153–155.
    (188) Bakir, F.; Damluji, S. F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N. Y.; Tikriti, S.; Dhahir, H. I.; Clarkson, T. W.; Smith, J. C.; Doherty, R. A. Methylmercury Poisoning in Iraq. Science 1973, 181, 230–241.
    (189) Pichichero, M. E.; Cernichiari, E.; Lopreiato, J.; Treanor, J. Mercury Concentrations and Metabolism in Infants Receiving Vaccines Containing Thiomersal: A Descriptive Study. Lancet 2002, 360, 1737–1741.
    (190) Clarkson, T. W.; Magos, L.; Myers, G. J. The Toxicology of Mercury–Current Exposures and Clinical Manifestations. N. Engl. J. Med. 2003, 349, 1731–1737.
    (191) Li, H.; Xu, Z.; Yang, L.; Wang, Q. Determination and Speciation of Hg using HPLC-AFS by Atomization of this Metal on a UV/nano-ZrO2/HCOOH Photocatalytic Reduction Unit. J. Anal. At. Spectrom. 2015, 30, 916–921.
    (192) Xu, F.; Jiang, X.; Hu, J.; Zhang, J.; Zou, Z.; Hou, X.; Yan, H. Nano g-C3N4/TiO2 Composite: A Highly Efficient Photocatalyst for Selenium (VI) Photochemical Vapor Generation for Its Ultrasensitive AFS Determination. Microchem. J. 2017, 135, 158–162.
    (193) Huang, K.; Xu, K.; Hou, X.; Jia, Y.; Zheng, C.; Yang, L. UV-induced Atomization of Gaseous Mercury Hydrides for Atomic Fluorescence Spectrometric Detection of Inorganic and Organic Mercury after High Performance Liquid Chromatographic Separation. J. Anal. At. Spectrom. 2013, 28, 510–515.
    (194) Lin, C.-H.; Chen, Y.; Su, Y.-A.; Luo, Y.-T.; Shih, T.-T.; Sun, Y.-C. Nanocomposite-Coated Microfluidic-Based Photocatalyst-Assisted Reduction Device to Couple High-Performance Liquid Chromatography and Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Inorganic Arsenic Species in Natural Water. Anal. Chem. 2017, 89, 5891–5899.
    (195) Shih, T.-T.; Chen, J.-Y.; Luo, Y.-T.; Lin, C.-H.; Liu, Y.-H.; Su, Y.-A.; Chao, P.-C.; Sun, Y.-C. Development of a Titanium Dioxide-assisted Preconcentration/On-site Vapor-Generation Chip Hyphenated with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Mercuric Ions in Urine Samples. Anal. Chim. Acta 2019, 1063, 82–90.
    (196) Lin, C.-H.; Su, C.-K.; Sun, Y.-C. Development of Online Microdialysis–Microfluidic-based Photocatalyst-assisted Vaporization Device–Inductively Coupled Plasma-Mass Spectrometry Hyphenated Analytical System for in vivo Quantification of the Transition of Brain Extracellular Mercury after Thimerosal Administration. Microchem. J. 2020, 154, 104569.
    (197) Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier, Amsterdam, The Netherlands, 2007.
    (198) Shiobara, R.; Ohira, T.; Doi, K.; Nishimura, M.; Kawase, T. Development of Artificial Cerebrospinal Fluid: Basic Experiments, and Phase II and III Clinical Trials. J. Neurol. Neurophysiol. 2013, 4, 1000173.
    (199) 林政興、孫毓璋 碩士論文:開發披覆式晶片型光觸媒輔助還原裝置串連高效能液相層析與感應耦合電漿質譜儀進行環境水樣中無機硒物種之分析研究; 國立清華大學: 台灣, 2010.
    (200) Delafiori, J.; Ring, G.; Furey, A. Clinical Applications of HPLC–ICP-MS Element Speciation: A Review. Talanta 2016, 153, 306−331.
    (201) Reid, R. S.; Rabenstein, D. L. Nuclear Magnetic Resonance Studies of the Solution Chemistry of Metal Complexes. XVII. Formation Constants for the Complexation of Methylmercury by Sulfhydryl-Containing Amino Acids and Related Molecules. Can. J. Chem. 1981, 59, 1505–1514.
    (202) Hallberg, Å. Thermodynamic Stability of Methylmercury Complexes with Low Molecular Mass Thiols; Umeå University: Sweden, 2017.
    https://umu.diva-portal.org/smash/get/diva2:1117479/FULLTEXT01.pdf. (accessed Sep, 2021)
    (203) Nosaka, A. Y.; Tanaka, G.; Nosaka, Y. The Behaviors of Glutathione and Related Amino Acids in the TiO2 Photocatalytic System. J. Phys. Chem. B. 2012, 116, 11098–11102.
    (204) Tummanapelli, A. K.; Vasudevan, S. Ab Initio MD Simulations of the Brønsted Acidity of Glutathione in Aqueous Solutions: Predicting pKa Shifts of the Cysteine Residue. J. Phys. Chem. B. 2015, 119, 15353–15358.
    (205) Su, C.-K.; Li, T.-W.; Sun, Y.-C. Online In-tube Solid-Phase Extraction using a Nonfunctionalized PVC Tube Coupled with ICPMS for in vivo Monitoring of Trace Metals in Rat Brain Microdialysates. Anal. Chem. 2008, 80, 6959−6967.
    (206) Su, C.-K.; Lee, T.-W.; Sun, Y.-C. Online Solid Phase Extraction using a PVC-Packed Minicolumn Coupled with ICP-MS for Determination of Trace Multielements in Complicated Matrices. J. Anal. At. Spectrom. 2012, 27, 1585−1590.
    (207) 行政院環境保護署 環境檢驗檢量線製備及查核指引, NIEA-PA103; 行政院環境保護署: 台灣, 2004.
    (208) Burbacher, T. M.; Shen, D. D.; Liberato, N.; Grant, K. S.; Cernichiari, E.; Clarkson, T. Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal. Environ. Health Perspect. 2005, 113, 1015−1021.
    (209) Zareba, G.; Cernichiari, E.; Hojo, R.; Nitt, S. M.; Weiss, B.; Mumtaz, M. M.; Jones, D. E.; Clarkson, T. W. Thimerosal Distribution and Metabolism in Neonatal Mice: Comparison with Methyl Mercury. J. Appl. Toxicol. 2007, 27, 511−518.
    (210) Harrington, C. F. The Speciation of Mercury and Organomercury Compounds by Using High-Performance Liquid Chromatography. Trac-Trends Anal. Chem. 2000, 19, 167−179.
    (211) Gao, Y.; Shi, Z.; Long, Z.; Wu, P.; Zheng, C.; Hou, X. Determination and Speciation of Mercury in Environmental and Biological Samples by Analytical Atomic Spectrometry. Microchem. J. 2012, 103, 1−14.
    (212) Cairns, W. R. L.; Ranaldo, M.; Hennebelle, R.; Turetta, C.; Capodaglio, G.; Ferrari, C. F.; Dommergue, A.; Cescon, P.; Barbante, C. Speciation Analysis of Mercury in Seawater from the Lagoon of Venice by On-line Pre-concentration HPLC–ICP-MS. Anal. Chim. Acta 2008, 622, 62–69.
    (213) Yin, Y.-G.; Wang, Z.-H.; Peng, J.-F.; Liu, J.-F.; He, B.; Jiang, G.-B. Direct Chemical Vapour Generation-Flame Atomization as Interface of High Performance Liquid Chromatography-Atomic Fluorescence Spectrometry for Speciation of Mercury without using Post-column Digestion. J. Anal. At. Spectrom. 2009, 24, 1575–1578.
    (214) Rodrigues, J. L.; de Souza, S. S.; de Oliveira Souza, V. C.; Barbosa, F., Jr. Methylmercury and Inorganic Mercury Determination in Blood by using Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry and a Fast Sample Preparation Procedure. Talanta 2010, 80, 1158–1163.
    (215) Wang, Z.-H.; Yin, Y.-G.; He, B.; Shi, J.-B.; Liu, J.-F.; Jiang, G.-B. L-cysteine-induced Degradation of Organic Mercury as a Novel Interface in the HPLC-CV-AFS Hyphenated System for Speciation of Mercury. J. Anal. At. Spectrom. 2010, 25, 810–814.
    (216) Jia, X.; Han, Y.; Liu, X.; Duan, T.; Chen, H. Speciation of Mercury in Water Samples by Dispersive Liquid–Liquid Microextraction Combined with High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2011, 66, 88–92.
    (217) Jia, X.; Han, Y.; Wei, C.; Duan, T.; Chen, H. Speciation of Mercury in Liquid Cosmetic Samples by Ionic Liquid based Dispersive Liquid–Liquid Microextraction Combined with High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2011, 26, 1380–1386.
    (218) Batista, B. L.; Rodrigues, J. L.; de Souza, S. S.; Oliveira Souza, V. C.; Barbosa, F., Jr. Mercury Speciation in Seafood Samples by LC–ICP-MS with a Rapid Ultrasound-assisted Extraction Procedure: Application to the Determination of Mercury in Brazilian Seafood Samples. Food Chem. 2011, 126, 2000–2004.
    (219) Jagtap, R.; Krikowa, F.; Maher, W.; Foster, S.; Ellwood, M. Measurement of Methyl Mercury (I) and Mercury (II) in Fish Tissues and Sediments by HPLC-ICPMS and HPLC-HGAAS. Talanta 2011, 85, 49–55.
    (220) Zhang, S.; Luo, H.; Zhang, Y.; Li, X.; Liu, J.; Xu, Q.; Wang, Z. In Situ Rapid Magnetic Solid-Phase Extraction Coupled with HPLC-ICP-MS for Mercury Speciation in Environmental Water. Microchem. J. 2016, 126, 25–31.
    (221) Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, 8th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2004.
    (222) 行政院環境保護署 水中汞檢測方法-氧化/吹氣捕捉/冷蒸氣原子螢光光譜法, NIEA W331.50B; 行政院環境保護署: 台灣, 2008.
    (223) Parker, J. L.; Bloom, N. S. Preservation and Storage Techniques for Low-level Aqueous Mercury Speciation. Sci. Total Environ. 2005, 337, 253–263.
    (224) 行政院環境保護署 放流水標準; 行政院環境保護署: 臺北, 2019.
    https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040004 (accessed Sep, 2021)
    (225) 行政院環境保護署 地面水體分類及水質標準; 行政院環境保護署: 臺北, 2017.
    https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=O0040005&flno=3 (accessed Sep, 2021)
    (226) Mandal, B. K.; Suzuki, K. T. Arsenic Round the World: A Review. Talanta 2002, 58, 201–235.
    (227) Han, F. X.; Su, Y.; Monts, D. L.; Plodinec, M. J.; Banin, A.; Triplett, G. E. Assessment of Global Industrial-Age Anthropogenic Arsenic Contamination. Naturwissenschaften 2003, 90, 395–401.
    (228) Ng, J. C.; Wang, J.; Shraim, A. A Global Health Problem Caused by Arsenic from Natural Sources. Chemosphere 2003, 52, 1353–1359.
    (229) Naidu, R.; Smith, E.; Owens, G.; Bhattacharya, P.; Nadebaum, P. Managing Arsenic in the Environment: From Soil to Human Health; CSIRO Publishing: Melbourne, Australia, 2006.
    (230) Chowdhury, U. K.; Biswas, B. K.; Chowdhury, T. R.; Samanta, G.; Mandal, B. K.; Basu, G. C.; Chanda, C. R.; Lodh, D.; Saha, K. C.; Mukherjee, S. K.; Roy, S.; Kabir, S.; Quamruzzaman, Q.; Chakraborti, D. Groundwater Arsenic Contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 2000, 108, 393–397.
    (231) Chen, S.-L.; Dzeng, S. R.; Yang, M.-H.; Chiu.K.-H.; Shieh, G.-M.; Wai, C. M. Arsenic Species in Groundwaters of the Blackfoot Disease Area, Taiwan. Environ. Sci. Technol. 1994, 28, 877–881.
    (232) Chakraborti, D.; Rahman, M. M.; Raul, K.; Chowdhyry, U. K.; Sengupta, M. K.; Lodh, D.; Chanda, C. R.; Saha, K. C.; Mukherjee, S. C. Arsenic Calamity in the Indian Subcontinent What Lessons Have Been Learned? Talanta 2002, 58, 3–22.
    (233) Chartterjee, A.; Das, D.; Mandal, B. K.; Chowdhury, T. R.; Samanta, G.; Chakraborti, D. Arsenic in Ground Water in Six Districts of West Bengal, India: the Biggest Arsenic Calamity in the World: Part I. Arsenic Species in Drinking Water and Urine of the Affected People. Analyst 1995, 120, 643–650.
    (234) Das, D.; Chatterjee, A.; Mandal, B. K.; Smanta, G.; Chakraborti, D. Arsenic in Ground Water in Six Districts of West Bengal, India: the Biggest Arsenic Calamity in the World: Part II. Arsenic Concentration in Drinking Water, Hair, Nails, Urine, Skin-scale and Liver Tissue (Biopsy) of the Affected People. Analyst 1995, 120, 917–924.
    (235) Bhattacharyya, R.; Chatterjee, D.; Nath, B.; Jana, J.; Jacks, G.; Vahter, M. High Arsenic Groundwater: Mobilization, Metabolism and Mitigation – an Overview in the Bengal Delta Plain. Mol. Cell. Biochem. 2003, 253, 347–355.
    (236) Mandal, B. K.; Chowdhury, T. R.; Samanta, G.; Basu, G. K.; Chowdhury, P. P.; Chanda, C. R.; Lodh, D.; Karan, N. K.; Dhar, R. K.; Tamili, D. K. Arsenic in Groundwater in Seven Districts of West Bengal, India-The Biggest Arsenic Calamity in the World. Curr. Sci. 1996, 70, 976–986.
    (237) Nath, B.; Jean, J.-S.; Lee, M.-K.; Yang, H.-J.; Liu, C.-C. Geochemistry of High Arsenic Groundwater in Chia-Nan Plain, Southwestern Taiwan: Possible Sources and Reactive Transport of Arsenic. J. Contam. Hydrol. 2008, 99, 85–96.
    (238) Nickson, R. T.; McArthur, J. M.; Ravenscroft, P.; Burgess, W. G.; Ahmed, K. M. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Appl. Geochem. 2000, 15, 403–413.
    (239) Tseng, W.-P. Effects and Dose Response Relationships of Skin Cancer and Blackfoot Disease with Arsenic. Environ. Health Perspect. 1977, 19, 109–119.
    (240) World Health Organization. Arsenic Compounds, Environmental Health Criteria 224, 2nd ed.; World Health Organization: Geneva, 2001.
    (241) World Health Organization. Guidelines for drinking-water quality, 4th ed.; World Health Organization: Geneva, 2011.
    (242) U.S. Environmental Protection Agency. Drinking Water Standard for Arsenic, EPA 815-F-00-015; U.S. Environmental Protection Agency: Washington, 2001.
    (243) Smith, A. H.; Hopenhayn-Rich, C.; Bates, M. N.; Goeden, H. M.; Hertz-Picciotto, I.; Duggan, H. M.; Wood, R.; Kosnett, M. J.; Smith, M. T. Cancer Risks from Arsenic in Drinking Water. Environ. Health Perspect. 1992, 97, 259–267.
    (244) Morales, K. H.; Ryan, L.; Kuo, T.-L.; Wu, M.-M.; Chen, C.-J. Risk of Internal Cancers from Arsenic in Drinking Water. Environ. Health Perspect. 2000, 108, 655–661.
    (245) Hughes, M. F. Arsenic Toxicity and Potential Mechanisms of Action. Toxicol. Lett. 2002, 133, 1–16.
    (246) Tam, G. K. H.; Charbonneau, S. M.; Bryce, F.; Sandi, E. Excretion of a Single Oral Dose of Fish-arsenic in Man. Bull. Environ. Contam. Toxicol. 1982, 28, 669–673.
    (247) Marafante, E.; Vahter, M.; Dencker, L. Metabolism of Arsenocholine in Mice, Rats and Rabbits. Sci. Total Environ. 1984, 34, 223–240.
    (248) Aposhian, H. V.; Zakharyan, R. A.; Avram, M. D.; Sampayo-Reyes, A.; Wollenberg, M. L. A Review of the Enzymology of Arsenic Metabolism and a New Potential Role of Hydrogen Peroxide in the Detoxication of the Trivalent Arsenic Species. Toxicol. Appl. Pharmacol. 2004, 198, 327–335.
    (249) Sharma, V. K.; Sohn, M. Aquatic Arsenic: Toxicity, Speciation, Transformations, and Remediation. Environ. Int. 2009, 35, 743–759.
    (250) Naranmandura, H.; Ibata, K.; Suzuki, K. T. Toxicity of Dimethylmonothioarsinic Acid toward Human Epidermoid Carcinoma A431 Cells. Chem. Res. Toxicol. 2007, 20, 1120–1125.
    (251) Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17, 6782−6786.
    (252) Pena, M. E.; Korfiatis, G. P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by Nanocrystalline Titanium Dioxide. Water Res. 2005, 39, 2327–2337.
    (253) Ma, L.; Tu, S. X. Removal of Arsenic from Aqueous Solution by Two Types of Nano TiO2 Crystals. Environ. Chem. Lett. 2011, 9, 465−472.
    (254) Bissen, M.; Vieillard-Baron, M.-M.; Schindelin, A. J.; Frimmel, F. H. TiO2-catalyzed Photooxidation of Arsenite to Arsenate in Aqueous Samples. Chemosphere 2001, 44, 751–757.
    (255) Choi, W.; Yeo, J.; Ryu, J.; Tachikawa, T.; Majima, T. Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species. Environ. Sci. Technol. 2010, 44, 9099–9104.
    (256) Yang, H.; Lin, W.-Y.; Rajeshwar, K. Homogeneous and Heterogeneous Photocatalytic Reactions Involving As(III) and As(V) Species in Aqueous Media. J. Photochem. Photobiol. A-Chem. 1999, 123, 137–143.
    (257) Liu, Z.-P.; Gong, X.-Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic Role of Metal Oxides in Gold-Based Catalysts: A First Principles Study of CO Oxidation on TiO2 Supported Au. Phys. Rev. Lett. 2003, 91, 266102.
    (258) Wang, J. G.; Hammer, B. Role of Au+ in Supporting and Activating Au7 on TiO2(110). Phys. Rev. Lett. 2006, 97, 136107.
    (259) Camellone, M. F.; Marx, D. Nature and Role of Activated Molecular Oxygen Species at the Gold/Titania Interface in the Selective Oxidation of Alcohols. J. Phys. Chem. C 2014, 118, 20989–21000.
    (260) Laborda, F.; Bolea, E.; Baranguan, M. T.; Castillo, J. R. Hydride Generation in Analytical Chemistry and Nascent Hydrogen: When is it Going to be Over? Spectroc. Acta Pt. B-Atom. Spectr. 2002, 57, 797–802.
    (261) Hinners, T. A. Arsenic Speciation: Limitations with Direct Hydride Analysis. Analyst 1980, 105, 751–755.
    (262) Welz, B.; Melcher, M. Mechanisms of Transition Metal Interferences in Hydride Generation Atomic-Absorption Spectrometry. Part 2. Influence of the Valency State of Arsenic on the Degree of Signal Depression Caused by Copper, Iron and Nickel. Analyst 1984, 109, 573–575.
    (263) Anderson, R. K.; Thompson, M.; Culbard, E. Selective Reduction of Arsenic Species by Continuous Hydride Generation. Part I. Reaction Media. Analyst 1986, 111, 1143–1152.
    (264) Driehaus, W.; Jekel, M. Determination of As(III) and Total Inorganic Arsenic by On-line Pretreatment in Hydride Generation Atomic Absorption Spectrometry. Fresenius J. Anal. Chem. 1992, 343, 352–356.
    (265) Musil, S.; Matoušek, T. On-line Pre-reduction of Pentavalent Arsenicals by Thioglycolic Acid for Speciation Analysis by Selective Hydride Generation–Cryotrapping–Atomic Absorption Spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2008, 63, 685–691.
    (266) Chen, H.; Brindle, I. D.; Le, X.-C. Prereduction of Arsenic(V) to Arsenic(III), Enhancement of the Signal, and Reduction of Interferences by L-Cysteine in the Determination of Arsenic by Hydride Generation. Anal. Chem.1992, 64, 667–672.
    (267) Tsalev, D. L.; D'Ulivo, A.; Lampugnani, L.; Di Marco, M.; Zemboni, R. Thermally Stabilized Iridium on an Integrated, Carbide-Coated Platform as a Permanent Modifier for Hydride-forming Elements in Electrothermal Atomic Absorption Spectrometry. Part 3. Effect of L-cysteine. J. Anal. At. Spectrom. 1996, 11, 989–995.
    (268) Tsalev, D. L.; Sperling, M.; Welz, B. Flow-injection Hydride Generation Atomic Absorption Spectrometric Study of the Automated On-line Pre-reduction of Arsenate, Methylarsonate and Dimethylarsinate and High-Performance Liquid Chromatographic Separation of their L-Cysteine Complexes. Talanta 2000, 51, 1059–1068.
    (269) Sun, Y.-C.; Chen, Y.-J.; Tsai, Y.-N. Determination of Urinary Arsenic Species using an On-line Nano-TiO2 Photooxidation Device Coupled with Microbore LC and Hydride Generation-ICP-MS System. Microchem. J. 2007, 86, 140−145.
    (270) Palmer, B. R.; Nami, F.; Fuerstenau, M. C. Reduction of Arsenic Acid with Aqueous Sulfur Dioxide. Metall. Trans. B 1976, 7, 385−390.
    (271) Druschel, G. K.; Hamers, R. J.; Banfield, J. F. Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low pH by O2 and Fe3+. Geochim. Cosmochim. Acta 2003, 67, 4457−4469.
    (272) Čermák, V.; Smutek, M. Mechanism of Decomposition of Dithionite in Aqueous Solutions. Collect. Czech. Chem. Commun. 1975, 40, 3241−3264.
    (273) Steudel, R.; Münchow, V. Sulphur Compounds: CLIX. Determination of Dithionite (S2O2−4) and Hydroxymethanesulphinate (HOCH2SO−2; Rongalite) by Ion-pair Chromatography. J. Chromatogr. A 1992, 623, 174−177.
    (274) Lu, P.; Zhu, C. Arsenic Eh–pH Diagrams at 25°C and 1 bar. Environ. Earth Sci. 2011, 62, 1673−1683.
    (275) Danehy, J. P.; Zubritsky, C. W. Iodometric Method for the Determination of Dithionite, Bisulfite, and Thiosulfate in the Presence of Each Other and Its Use in Following the Decomposition of Aqueous Solutions of Sodium Dithionite. Anal. Chem. 1974, 46, 391−395.
    (276) Lam, S. W.; Chiang, K.; Lim, T. M.; Amal, E.; Low, G. K.-C. Electrophoresis–A New Approach for the Determination of Organic Matters Adsorption on Irradiated TiO2. J. Photochem. Photobiol. A-Chem. 2007, 187, 127−132.
    (277) Jézéquel, H.; Chu, K. H. Removal of Arsenate from Aqueous Solution by Adsorption onto Titanium Dioxide Nanoparticles. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2006, 41, 1519−1528.
    (278) Chen, Z.; Akter, K. F.; Rahman, M. M.; Naidu, R. The Separation of Arsenic Species in Soils and Plant Tissues by Anion-exchange Chromatography with Inductively Coupled Mass Spectrometry using Various Mobile Phases. Microchem. J. 2008, 89, 20−28.
    (279) Hu, Z.; Hu, S.; Gao, S.; Liu, Y.; Lin, S. Volatile Organic Solvent-induced Signal Enhancements in Inductively Coupled Plasma-Mass Spectrometry: A Case Study of Methanol and Acetone. Spectroc. Acta Pt. B-Atom. Spectr. 2004, 59, 1463−1470.
    (280) Guo, W.; Hu, S.; Li, X.; Zhao, J.; Jin, S.; Liu, W.; Zhang, H. Use of Ion–Molecule Reactions and Methanol Addition to Improve Arsenic Determination in High Chlorine Food Samples by DRC-ICP-MS. Talanta 2011, 84, 887−894.
    (281) Zheng, C.; Sturgeon, R. E.; Brophy, C.; Hou, X. Versatile Thin-Film Reactor for Photochemical Vapor Generation. Anal. Chem. 2010, 82, 3086–3093.
    (282) 行政院環境保護署 水質檢測方法總則, NIEA W102.51C; 行政院環境保護署: 台灣, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE