研究生: |
陳家湘 Chen, Chia-Hsiang |
---|---|
論文名稱: |
三次曲面上的直線及Del Pezzo曲面的分類 Lines on cubic surfaces and classification of Del Pezzo surfaces |
指導教授: |
卓士堯
Jow, Shin-Yao |
口試委員: |
陳俊成
Chen, Jiun-Cheng 陳正傑 Chen, Jheng-Jie |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 三次曲面 、Del Pezzo曲面 |
外文關鍵詞: | Cubic surface, Del Pezzo surface |
相關次數: | 點閱:304 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三次曲面裡的一個經典問題是-光滑射影三次曲面定義在代數封閉體剛好包含二十七條$\mathbb{P}^3$裡的直線。在這篇文章裡我們使用現代手法證明這個結果並在一些條件下分類三次曲面。接著,我們介紹Del Pezzo曲面並在光滑射影且定義在代數封閉體時分類他們。最後,作為在三次曲面的二十七條線的推廣問題,我們研究Del Pezzo曲面上的$(-1)$曲線。
A classical problem in the theory of cubic surfaces is that a smooth projective cubic surface over an algebraically closed field contains exactly twenty-seven lines in $\mathbb{P}^3$. In this paper, we provide a modern proof of this result and classify cubic surfaces under certain conditions. Next, we introduce Del Pezzo surfaces and classify them in the case of smooth, projective surfaces over an algebraically closed field. Finally, we generalize the problem of counting the twenty-seven lines on cubic surfaces by studying the (−1)-curves on Del Pezzo surfaces.
[1] A. Cayley. “On the triple tangent planes of surfaces of the third order”. In: Cambridge and
Dublin Mathematical Journal IV (1849), pp. 118–132.
[2] P. del Pezzo. “Sulle superficie dell’ordine n immerse negli spazi di n + 1 dimensioni”. In:
Rendiconto della R. Accademia delle Scienze fis. e mat. di Napoli (1885).
[3] R. Hartshorne. Algebraic Geometry. Vol. 52. Graduate Texts in Mathematics. Springer,
1977.
[4] Y. I. Manin. Cubic Forms. 2nd ed. Vol. 4. North-Holland Mathematical Library. North-
Holland, 1986.
[5] A. Beauville. Complex Algebraic Surfaces. 2nd ed. Vol. 34. London Mathematical Society
Student Texts. Cambridge University Press, 1996.
[6] J. Kollár. Rational Curves on Algebraic Varieties. Vol. 32. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, 1996.
[7] I. R. Shafarevich. Basic algebraic geometry 1. 3rd ed. Springer, 2014.