簡易檢索 / 詳目顯示

研究生: 陳毓萱
Chen, Yu-Hsuan
論文名稱: 軟性複合材料光學特性及其應用在臨床快篩與輻射冷卻之研究
Optical Study of Flexible Composites at Visible and Infrared Wavelengths for Applications in Rapid Diagnosis and Daytime Cooling
指導教授: 萬德輝
Wan, De-Hui
口試委員: 陳學禮
Chen, Hsuen-Li
顏宗海
Yen, Tzung-Hai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 157
中文關鍵詞: 表面增強拉曼散射濾紙基材擬三維結構日間輻射冷卻蠶絲蛋白
外文關鍵詞: surface enhanced Raman scattering (SERS), filter paper, quasi-three dimensional SERS substrates, daytime radiative cooling, silk
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文總共分為三大部分,以軟性材料為出發點,進行不同波段的光學特性研究,並將其應用於拉曼檢測及日間輻射冷卻裝置。第一部分為利用物理濺鍍金奈米粒子於濾紙表面做為拉曼增益基材,希望製作出方便攜帶、可拋棄式以及環境友善的拉曼訊號增強試紙。第二部分則是以化學合成法製作金奈米粒子,並以濾紙為基材以增益待測物拉曼訊號。第三部分是利用天然蠶絲蛋白於紅外光大氣窗口波段(8~13μm)的高吸收性質,讓整體的輻射量遠大於從外界吸收到的輻射熱,達到降溫目的以利應用於日間輻射冷卻的裝置。
    第一部分是以濾紙作為基材,搭配可攜式拉曼光譜儀做為拉曼訊號增益研究。我們使用物理濺鍍法將金奈米粒子沉積於此擬三微結構的濾紙上,藉由控制金奈米粒子沉積的時間與製程壓力,使之成為良好的增強拉曼訊號基材。在濺鍍金之前,先將全氟辛基三氯矽烷氣相沉積於濾紙,利用其降低基材表面能之效果以利形成奈米粒子,同時利用其超疏水濃縮效應達到濃縮待測物的效果,使待測物可以集中落於金奈米粒子之間的熱點區域。此實驗中探討了顯微拉曼不同雷射波長之光學量測架構和對拉曼效果的影響,並且以電子顯微影像分析金奈米粒子形貌與透過近場光學模擬軟體分析其強電場分布的行為,最後從中找到較佳製作增強拉曼訊號基材的參數。接著,在以入射光波長為785奈米的雷射做為激發光源,比較可攜拉曼和顯微拉曼量測亞甲藍待測物訊號,與表面增強拉曼增益係數,發現最佳製程基材於可攜拉曼量測下其增益係數可達 ,而單點材料成本則低於台幣1元。此最佳化之增益拉曼訊號基材擁有良好的再現性與環境穩定性,透過搭配可攜式拉曼儀器檢測農藥巴拉刈以及常用色素分子,可應用於真實病患血清檢體與市售含色素飲料之檢測。除此之外,在第二部分則是以化學合成法形成金奈米粒子後再沉積於濾紙上,藉由調控金奈米粒子濃度並分析其拉曼增益訊號之最佳參數,當量測標準品亞甲藍時,其線性量測濃度範圍可達10-10~10-7 M。
    第三部分為探討不同天然材料其寬波段光學性質與日間輻射冷卻特性,藉由可見光以及紅外光光譜儀搭配積分球套件量測,發現蠶絲蛋白薄膜在AM1.5太陽光譜範圍具有高穿透低吸收特性,於紅外光波段則符合於大氣窗口(8~13 μm)範圍內有寬頻吸收峰。進而透過電子顯微鏡分析其薄膜厚度,搭配上述的量測光譜,擬合出蠶絲蛋白於太陽光及紅外光波段的折射率與消光係數,並計算出最佳降溫效果之蠶絲薄膜厚度,最終評估蠶絲蛋白薄膜實際作為日間輻射冷卻裝置的效果,例如成功冷卻手機於太陽直射下使用時的溫度達2度。


    This thesis consists of three parts and we systematically investigated the optical properties of flexible composites at visible (Vis) and infrared (IR) wavelengths for the applications in Raman spectroscopy and daytime radiative cooling devices. The first and second topics are about investigating the portable, disposable and eco-friendly paper-based surface enhanced Raman scattering (SERS) chips. The third topic is about emlpoying silk protein films as daytime radiative cooling materials because of its high absorption band at IR region, especially within the atmospheric window (8~13μm).
    In the first part of the thesis, we fabricated the paper-based SERS substrates via direct sputtering deposition of gold on a filter paper. By finely controlling the deposition rate, deposition time and vacuum pressure during the process, we successfully created non-continuous gold nanoislands (AuNPs) on the paper surface. The gaps between the AuNPs would generate extremely high electric fields to enhance the Raman signals of target molecules. Beside, by using the perfluorooctyl-trichlorosilane treatment before sputtering, the surface energy of the paper surface would be siginificantly decreased to induce the formation of AuNPs, rather than continuous gold film. Also, the hydrophobic property can inhibit the diffusion of analytes into the deep location of papers. Therefore, the analytes in a sample droplet could be condensed on the paper surface and consequently raising their effective concentration within the hotspots supported by the AuNPs. Then, we observed the morphologies of the AuNPs on paper by SEM and used a three-dimensional finite-difference time–domain (3D-FDTD) simulation to analyze their near-field electromagnetic responses. Besides, we discussed the influences of the wavelength of excitation laser. The AuNPs SERS paper provided significant responses of SERS intensity of methylene blue (MB) for both micro Raman and portable Raman apparatus with the excitation laser having a wavelength of 785 nm. The optimized AuNPs-deposited papers exhibited a significant Raman enhancement factor up to 109, even by using a portable Raman spectrometer. Finally, we developed low-cost quasi-three dimensional SERS substrates with good reproducibility and stability that can provide potential to improve Raman analyses of pesticides and food additives. Also, the SERS substrates can provide the determination of serum paraquat level of paraquat-poisoned patients and colorants level of beverages. In the second part of the thesis, we fabricated the paper-based SERS substrates via drop-casting pre-synthesized gold nanoparticles on a filter paper. By finely controlling the concentration of gold nanoparticles, we found the AuNPs SERS paper provided linear responses of methylene blue within the concentration range from 10-10 M to 10-7 M with portable Raman apparatus.
    In the third part of the thesis, we investigated the optical properties of silk fibroin films over UV-VIS-IR wavelength range. We found the high transmittance within the range of AM1.5 spectrum. Besides, the films also have broadband absorption bands cross the atmosphere windows. Based on the broadband optical spectra and the thickness of the silk films obtained from SEM, we determined the refractive indices and excitation coefficients in the range of AM1.5 spectrum and MIR wavelength. Besides, we could utilize optical simulation to find the optimized thickness for the silk to be applied on thermal management of electronic devices such as cooling down the temperature of smartphones.

    致謝 I 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XVIII 第 1 章 緒論 1 1.1 前言 1 1.2 論文架構 3 第 2 章 文獻回顧 4 2.1表面增強拉曼光譜原理 4 2.1.1拉曼散射基本原理 4 2.1.2金屬奈米粒子之侷域性表面電漿共振(localized surface plasomn resonance, LSPR) 5 2.1.3表面增強拉曼散射(surface-enhanced Raman scattering, SERS) 10 2.2 金屬奈米粒子之形成方法 11 2.2.1化學法製程 11 2.2.2物理法製程 12 2.3表面增強拉曼光譜製程 15 2.3.1 奈米粒子基材製程 15 2.3.2 二維基材製程 18 2.3.3 三維基材製程 20 2.3.4 紙基材製程 21 2.4 表面增強拉曼光譜應用 26 2.4.1新興毒品 26 2.4.2食品安全分子 28 2.4.3 生物分子 31 2.5日間冷卻熱輻射 33 2.5.1 日間輻射冷卻原理 33 2.5.2 利用介電材料設計之日間輻射冷卻裝置 35 2.5.3 利用高分子材料設計之日間輻射冷卻裝置 37 第 3 章 物理法表面增強拉曼光譜製程開發及其應用 43 3.1 研究動機與目的 43 3.2 研究方法 44 3.2.1 實驗藥品與材料 44 3.2.2 實驗設備 45 3.2.3 實驗流程與方法 46 3.3 實驗結果與討論 49 3.3.1 利用疏水處理調控濾紙上金奈米粒子形貌及其光學性質量測 49 3.3.2 不同波長之顯微拉曼激發雷射光下待測物之表面增強拉曼光譜訊號與其濃度關係探討 61 3.3.3 物理法製程濾紙基材之表面增強拉曼光譜訊號探討 67 3.3.4 顯微拉曼與可攜拉曼於相同激發雷射光下待測物之表面增強拉曼光譜訊號與其濃度關係探討 70 3.3.5 物理法製備表面增強拉曼光譜濾紙基材之穩定性測試 74 3.3.6 物理法製備表面增強拉曼光譜濾紙基材與商業基材比較 78 3.3.7 物理法製備表面增強拉曼光譜濾紙基材於分析檢測之應用 80 3.4 結論 97 第 4 章 化學法表面增強拉曼光譜製程開發 98 4.1 研究動機與目的 98 4.2 研究方法 99 4.2.1 實驗藥品與材料 99 4.2.2 實驗設備 99 4.2.3 實驗流程與方法 100 4.3 實驗結果與討論 101 4.3.1金奈米粒子形貌及其光學性質量測 101 4.3.2 濾紙疏水之影響 104 4.3.3化學法製程濾紙基材之表面增強拉曼光譜訊號探討 105 4.4 結論 107 第 5 章 天然物紅外光譜探討及日間輻射冷卻研究 108 5.1 研究動機與目的 108 5.2 研究方法 109 5.2.1 實驗藥品與材料 109 5.2.2 實驗設備 110 5.2.3 實驗流程與方法 110 5.3 實驗結果與討論 112 5.3.1各種天然物之形貌及其光學性質量測 112 5.3.2 天然蠶絲蛋白薄膜之形貌與光學性質量測 121 5.3.3 天然蠶絲蛋白薄膜之光學常數擬似與其厚度最佳化探討 124 5.3.4 天然蠶絲蛋白薄膜降溫效果模擬與量測 128 5.4 結論 139 第 6 章 結論 140 6.1 研究總結 140 6.2未來研究規劃 142 參考文獻 143

    1. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121, 501-502.
    2. Raman, C. V.; Krishnan, K. S., A new class of spectra due to secondary radiation. Indian J. Phys. 1928, 2, 399-419.
    3. Ember, K. J. I.; Hoeve, M. A.; McAughtrie, S. L.; Bergholt, M. S.; Dwyer, B. J.; Stevens, M. M.; Faulds, K.; Forbes, S. J.; Campbell, C. J., Raman spectroscopy and regenerative medicine: a review. npj Regenerative Medicine 2017, 2 (1), 12.
    4. Faraday, M., X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.
    5. Petryayeva, E.; Krull, U. J., Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta 2011, 706 (1), 8-24.
    6. Willets, K. A.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    7. Maier, S. A., Plasmonics: Fundamentals and Applications. Springer: 2007.
    8. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712.
    9. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 2014, 195, 332-351.
    10. Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H.-Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C.-J., Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (40), 14664-14669.
    11. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
    12. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 2017, 46 (13), 4042-4076.
    13. Ouyang, L.; Ren, W.; Zhu, L.; Irudayaraj, J., Prosperity to challenges: recent approaches in SERS substrate fabrication. Reviews in Analytical Chemistry 2017, 36 (1).
    14. Wang, Y.; Yan, B.; Chen, L., SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chemical Reviews 2013, 113 (3), 1391-1428.
    15. Gruenke, N. L.; Cardinal, M. F.; McAnally, M. O.; Frontiera, R. R.; Schatz, G. C.; Van Duyne, R. P., Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chemical Society Reviews 2016, 45 (8), 2263-2290.
    16. Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science 2012, 170 (1), 2-27.
    17. Datta, K. K. R.; Reddy, B. V. S.; Ariga, K.; Vinu, A., Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three-Component Coupling Reaction. Angewandte Chemie International Edition 2010, 49 (34), 5961-5965.
    18. Yonezawa, T.; Kunitake, T., Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 149 (1), 193-199.
    19. Niu, W.; Chua, Y. A. A.; Zhang, W.; Huang, H.; Lu, X., Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. Journal of the American Chemical Society 2015, 137 (33), 10460-10463.
    20. Sun, Y.; Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298 (5601), 2176-2179.
    21. Xie, J.; Zhang, Q.; Lee, J. Y.; Wang, D. I. C., The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano 2008, 2 (12), 2473-2480.
    22. Huang, J.; Guo, M.; Ke, H.; Zong, C.; Ren, B.; Liu, G.; Shen, H.; Ma, Y.; Wang, X.; Zhang, H. J. A. M., Rational design and synthesis of γFe2O3@ Au magnetic gold nanoflowers for efficient cancer theranostics. 2015, 27 (34), 5049-5056.
    23. Liu, Z.; Lee, C.; Narayanan, V.; Pei, G.; Kan, E. C., Metal nanocrystal memories. I. Device design and fabrication. IEEE Transactions on Electron Devices 2002, 49 (9), 1606-1613.
    24. Gupta, G.; Tanaka, D.; Ito, Y.; Shibata, D.; Shimojo, M.; Furuya, K.; Mitsui, K.; Kajikawa, K., Absorption spectroscopy of gold nanoisland films: optical and structural characterization. Nanotechnology 2009, 20.
    25. Haro-Poniatowski, E.; Fort, E.; Lacharme, J. P.; Ricolleau, C., Patterning of nanostructured thin films by structured light illumination. Applied Physics Letters 2005, 87 (14), 143103.
    26. Henley, S. J.; Carey, J. D.; Silva, S. R. P., Metal nanoparticle production by pulsed laser nanostructuring of thin metal films. Applied Surface Science 2007, 253 (19), 8080-8085.
    27. Kamat, P. V.; Flumiani, M.; Hartland, G. V., Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation. The Journal of Physical Chemistry B 1998, 102 (17), 3123-3128.
    28. Żenkiewicz, M., Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering 2007, 24 (1), 137-145.
    29. Ma, K.; Chung, T.-S.; Good, R. J., Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. Journal of Polymer Science Part B: Polymer Physics 1998, 36 (13), 2327-2337.
    30. Kwon, K.; Lee, K. Y.; Kim, M.; Lee, Y. W.; Heo, J.; Ahn, S. J.; Han, S. W., High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced Raman scattering activity. Chemical Physics Letters 2006, 432 (1), 209-212.
    31. Dadosh, T., Synthesis of uniform silver nanoparticles with a controllable size. Material Letters 2009, 63, 2236-2238.
    32. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S. J. C. o. M., Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. 2015, 27 (15), 5261-5270.
    33. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Ren, B., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464 (7287), 392-395.
    34. Wang, J. L.; Ando, R. A.; Camargo, P. H. C., Investigating the Plasmon-Mediated Catalytic Activity of AgAu Nanoparticles as a Function of Composition: Are Two Metals Better than One? ACS Catalysis 2014, 4 (11), 3815-3819.
    35. Ren, W.; Fang, Y.; Wang, E., A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids. ACS Nano 2011, 5 (8), 6425-6433.
    36. Zhou, Y.; Chen, J.; Zhang, L.; Yang, L., Multifunctional TiO2‐Coated Ag Nanowire Arrays as Recyclable SERS Substrates for the Detection of Organic Pollutants. European Journal of Inorganic Chemistry 2012, 2012 (19), 3176-3182.
    37. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M., Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4 (7), 3591-3605.
    38. Edel, J. B.; Kornyshev, A. A.; Urbakh, M., Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 2013, 7 (11), 9526-9532.
    39. Cecchini, M. P.; Turek, V. A.; Demetriadou, A.; Britovsek, G.; Welton, T.; Kornyshev, A. A.; Wilton‐Ely, J. D.; Edel, J. B., Heavy Metal Sensing Using Self‐Assembled Nanoparticles at a Liquid–Liquid Interface. Advanced Optical Materials
    2014, 2 (10), 966-977.
    40. Dick, L. A.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B 2002, 106 (4), 853-860.
    41. Lee, J.; Zhang, Q.; Park, S.; Choe, A.; Fan, Z.; Ko, H., Particle–film plasmons on periodic silver film over nanosphere (AgFON): a hybrid plasmonic nanoarchitecture for surface-enhanced Raman spectroscopy. ACS Applied Materials & Interfaces 2015, 8 (1), 634-642.
    42. Chaney, S. B.; Shanmukh, S.; Dluhy, R. A.; Zhao, Y.-P., Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Applied Physics Letters 2005, 87 (3), 031908.
    43. Qu, L.-L.; Li, D.-W.; Xue, J.-Q.; Zhai, W.-L.; Fossey, J. S.; Long, Y.-T., Batch fabrication of disposable screen printed SERS arrays. Lab on a Chip 2012, 12 (5), 876-881.
    44. Ding, T.; Sigle, D. O.; Herrmann, L. O.; Wolverson, D.; Baumberg, J. J., Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS. ACS Applied Materials & Interfaces 2014, 6 (20), 17358-17363.
    45. Xu, Z.; Jiang, J.; Wang, X.; Han, K.; Ameen, A.; Khan, I.; Chang, T.-W.; Liu, G. L., Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 2016, 8 (11), 6162-6172.
    46. Liu, X.; Wang, X.; Zha, L.; Lin, D.; Yang, J.; Zhou, J.; Zhang, L., Temperature-and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels. Journal of Materials Chemistry C 2014, 2 (35), 7326-7335.
    47. Park, S. G.; Mun, C.; Xiao, X.; Braun, A.; Kim, S.; Giannini, V.; Maier, S. A.; Kim, D. H., Surface Energy‐Controlled SERS Substrates for Molecular Concentration at Plasmonic Nanogaps. Advanced Functional Materials 2017, 27 (41), 1703376.
    48. Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H., Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Analytical Chemistry 2017, 89 (4), 2424-2431.
    49. Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L., Surface-enhanced Raman spectrometry for trace organic analysis. Analytical Chemistry 1984, 56 (9), 1667-1670.
    50. Yu, W. W.; White, I. M., Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Analytical Chemistry 2010, 82 (23), 9626-9630.
    51. Yu, W. W.; White, I. M., Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 2013, 138 (13), 3679-3686.
    52. Yu, W. W.; White, I. M., Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138 (4), 1020-1025.
    53. Hoppmann, E. P.; Yu, W. W.; White, I. M., Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 2013, 63 (3), 219-224.
    54. Wang, J.; Yang, L.; Liu, B.; Jiang, H.; Liu, R.; Yang, J.; Han, G.; Mei, Q.; Zhang, Z., Inkjet-Printed Silver Nanoparticle Paper Detects Airborne Species from Crystalline Explosives and Their Ultratrace Residues in Open Environment. Analytical Chemistry 2014, 86 (7), 3338-3345.
    55. Lee, C. H.; Tian, L.; Singamaneni, S., Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Applied Materials & Interfaces 2010, 2 (12), 3429-3435.
    56. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G., Gold Nanoparticle–Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir 2012, 28 (23), 8782-8790.
    57. Kim, W.; Kim, Y.-H.; Park, H.-K.; Choi, S., Facile Fabrication of a Silver Nanoparticle Immersed, Surface-Enhanced Raman Scattering Imposed Paper Platform through Successive Ionic Layer Absorption and Reaction for On-Site Bioassays. ACS Applied Materials & Interfaces 2015, 7 (50), 27910-27917.
    58. Kim, W.; Lee, J.-C.; Shin, J.-H.; Jin, K.-H.; Park, H.-K.; Choi, S., Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides. Analytical Chemistry 2016, 88 (10), 5531-5537.
    59. Kim, W.; Lee, J.-C.; Lee, G.-J.; Park, H.-K.; Lee, A.; Choi, S., Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core–Gold Shell Nanoparticle Structures. Analytical Chemistry 2017, 89 (12), 6448-6454.
    60. Satheeshkumar, E.; Karuppaiya, P.; Sivashanmugan, K.; Chao, W.-T.; Tsay, H.-S.; Yoshimura, M., Biocompatible 3D SERS substrate for trace detection of amino acids and melamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 181, 91-97.
    61. Kim, W.; Lee, S. H.; Ahn, Y. J.; Lee, S. H.; Ryu, J.; Choi, S. K.; Choi, S., A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosensors and Bioelectronics 2018, 111, 59-65.
    62. Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y.-H.; Yu, J. S.; Choi, S., Paper-Based Surface-Enhanced Raman Spectroscopy for Diagnosing Prenatal Diseases in Women. ACS Nano 2018, 12 (7), 7100-7108.
    63. Qu, L.-L.; Song, Q.-X.; Li, Y.-T.; Peng, M.-P.; Li, D.-W.; Chen, L.-X.; Fossey, J. S.; Long, Y.-T., Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Analytica Chimica Acta 2013, 792, 86-92.
    64. Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B., Highly efficient SERS test strips. Chemical Communications 2012, 48 (47), 5913-5915.
    65. Park, M.; Jung, H.; Jeong, Y.; Jeong, K.-H., Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. ACS Nano 2017, 11 (1), 438-443.
    66. González-Peñas, E.; Leache, C.; Viscarret, M.; Pérez de Obanos, A.; Araguás, C.; López de Cerain, A., Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. Journal of Chromatography A 2004, 1025 (2), 163-168.
    67. Lee, S.; Choi, H.; Kim, E.; Choi, H.; Chung, H.; Chung, K. H., Estimation of the Measurement Uncertainty by the Bottom-Up Approach for the Determination of Methamphetamine and Amphetamine in Urine. Journal of Analytical Toxicology 2010, 34 (4), 222-228.
    68. Han, Z.; Liu, H.; Meng, J.; Yang, L.; Liu, J.; Liu, J., Portable Kit for Identification and Detection of Drugs in Human Urine Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry 2015, 87 (18), 9500-9506.
    69. Han, Z.; Liu, H.; Wang, B.; Weng, S.; Yang, L.; Liu, J., Three-Dimensional Surface-Enhanced Raman Scattering Hotspots in Spherical Colloidal Superstructure for Identification and Detection of Drugs in Human Urine. Analytical Chemistry 2015, 87 (9), 4821-4828.
    70. Ma, Y.; Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J., Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Analytical Chemistry 2016, 88 (16), 8145-8151.
    71. Yan, X.; Li, P.; Zhou, B.; Tang, X.; Li, X.; Weng, S.; Yang, L.; Liu, J., Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection. Analytical Chemistry 2017, 89 (9), 4875-4881.
    72. Lee, W. W. Y.; Silverson, V. A. D.; Jones, L. E.; Ho, Y. C.; Fletcher, N. C.; McNaul, M.; Peters, K. L.; Speers, S. J.; Bell, S. E. J., Surface-enhanced Raman spectroscopy of novel psychoactive substances using polymer-stabilized Ag nanoparticle aggregates. Chemical Communications 2016, 52 (3), 493-496.
    73. Halouzka, V.; Halouzkova, B.; Jirovsky, D.; Hemzal, D.; Ondra, P.; Siranidi, E.; Kontos, A. G.; Falaras, P.; Hrbac, J., Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS. Talanta 2017, 165, 384-390.
    74. Christie, R.; Horan, E.; Fox, J.; O'Donnell, C.; Byrne, H. J.; McDermott, S.; Power, J.; Kavanagh, P., Discrimination of cathinone regioisomers, sold as ‘legal highs’, by Raman spectroscopy. 2014, 6 (7-8), 651-657.
    75. Faulds, K.; Smith, W. E.; Graham, D.; Lacey, R. J., Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst 2002, 127 (2), 282-286.
    76. Xu, Q.; Guo, X.; Xu, L.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H., Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sensors and Actuators B: Chemical 2017, 241, 1008-1013.
    77. Terekhov, S.; Palikov, V.; Palikova, Y.; Dyachenko, I.; Shamborant, O.; Smirnov, I.; Masson, P.; Gabibov, A., Application of Tetrameric Recombinant Human Butyrylcholinesterase as a Biopharmaceutical for Amelioration of Symptoms of Acute Organophosphate Poisoning. Bulletin of experimental biology medicine 2017, 163 (4), 430-435.
    78. Nigg, H. N.; Knaak, J. B., Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. In Reviews of environmental contamination and toxicology, Springer: 2000; pp 29-111.
    79. Zhai, C.; Peng, Y.; Li, Y.; Chao, K., Extraction and identification of mixed pesticides' Raman signal and establishment of their prediction models. Raman Spectroscopy 2017, 48 (3), 494-500.
    80. Chen, Z.; Yongyu, L.; Yankun, P.; Tianfeng, X., Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy. International Journal of Agricultural Biological Engineering 2015, 8 (5), 113-120.
    81. Feng, S.; Hu, Y.; Ma, L.; Lu, X., Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice. Sensors Actuators B: Chemical 2017, 241, 750-757.
    82. Kim, A.; Barcelo, S. J.; Li, Z., SERS-based pesticide detection by using nanofinger sensors. Nanotechnology 2014, 26 (1), 015502.
    83. Zhang, K.; Ji, J.; Fang, X.; Yan, L.; Liu, B., Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing. Analyst 2015, 140 (1), 134-139.
    84. Wang, C.; Wu, X.; Dong, P.; Chen, J.; Xiao, R., Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosensors and Bioelectronics 2016, 86, 944-950.
    85. Luo, H.; Wang, X.; Huang, Y.; Lai, K.; Rasco, B. A.; Fan, Y., Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. 2018, 98 (10), 3892-3898.
    86. Zhu, Y.; Wu, J.; Gao, H.; Liu, G.; Tian, Z.; Feng, J.; Guo, L.; Xie, J., Rapid on-site detection of paraquat in biologic fluids by iodide-facilitated pinhole shell-isolated nanoparticle-enhanced Raman spectroscopy. RSC Advances 2016, 6 (65), 59919-59926.
    87. Xie, Y.; Mukamurezi, G.; Sun, Y.; Wang, H.; Qian, H.; Yao, W., Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. European Food Research Technology
    2012, 234 (6), 1091-1098.
    88. Sun, X.-d.; Dong, X.-l., Quantitative Analysis of Dimethoate Pesticide Residues in Honey by Surface-Enhanced Raman Spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2015, 35 (6), 1572-1576.
    89. Liu, Y.; Ye, B.; Wan, C.; Hao, Y.; Ouyang, A.; Lan, Y., Determination of dimethoate and phosmet pesticides with surface-enhanced Raman spectroscopy. Spectroscopy Letters 2016, 49 (3), 198-203.
    90. Chen, Q.; Yang, M.; Yang, X.; Li, H.; Guo, Z.; Rahma, M. H., A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 189, 147-153.
    91. Ko, J.; Lee, C.; Choo, J., Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. Journal of Hazardous Materials 2015, 285, 11-17.
    92. Li, Q.; Lu, Z.; Tan, X.; Xiao, X.; Wang, P.; Wu, L.; Shao, K.; Yin, W.; Han, H., Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosensors and Bioelectronics 2017, 97, 59-64.
    93. Zhou, B.; Mao, M.; Cao, X.; Ge, M.; Tang, X.; Li, S.; Lin, D.; Yang, L.; Liu, J., Amphiphilic Functionalized Acupuncture Needle as SERS Sensor for In Situ Multiphase Detection. Analytical Chemistry 2018, 90 (6), 3826-3832.
    94. Xie, Y.; Li, Y.; Niu, L.; Wang, H.; Qian, H.; Yao, W., A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta 2012, 100, 32-37.
    95. Zhu, Y.; Zhang, L.; Yang, L., Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Materials Research Bulletin 2015, 63, 199-204.
    96. Ou, Y.; Wang, X.; Lai, K.; Huang, Y.; Rasco, B. A.; Fan, Y., Gold Nanorods as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Allura Red and Sunset Yellow in Beverages. Journal of Agricultural and Food Chemistry 2018, 66 (11), 2954-2961.
    97. Yao, Y.; Wang, W.; Tian, K.; Ingram, W. M.; Cheng, J.; Qu, L.; Li, H.; Han, C., Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 195, 165-171.
    98. Xie, Y.; Li, Y.; Sun, Y.; Wang, H.; Qian, H.; Yao, W., Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 96, 600-604.
    99. Wang, H.; Malvadkar, N.; Koytek, S.; Bylander, J.; Reeves, W. B.; Demirel, M. C., Quantitative analysis of creatinine in urine by metalized nanostructured parylene. Journal of Biomedical Optics 2010, 15 (2), 027004.
    100. Le Bricon, T.; Thervet, E.; Froissart, M.; Benlakehal, M.; Bousquet, B.; Legendre, C.; Erlich, D., Plasma Cystatin C Is Superior to 24-h Creatinine Clearance and Plasma Creatinine for Estimation of Glomerular Filtration Rate 3 Months after Kidney Transplantation. Clinical Chemistry 2000, 46 (8), 1206.
    101. Slot, C., Plasma Creatinine Determination A New and Specific Jaffe Reaction Method. Scandinavian Journal of Clinical and Laboratory Investigation 1965, 17 (4), 381-387.
    102. Li, M.; Du, Y.; Zhao, F.; Zeng, J.; Mohan, C.; Shih, W.-C., Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed. Opt. Express 2015, 6 (3), 849-858.
    103. Saatkamp, C. J.; de Almeida, M. L.; Bispo, J. A. M.; Pinheiro, A. L. B.; Fernandes, A. B.; Silveira, L., Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease. Journal of biomedical optics 2016, 21 (3), 037001.
    104. Yang, X.; Zhang, A. Y.; Wheeler, D. A.; Bond, T. C.; Gu, C.; Li, Y., Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Analytical bioanalytical chemistry
    2012, 402 (2), 687-691.
    105. Torul, H.; Çiftçi, H.; Çetin, D.; Suludere, Z.; Boyacı, I. H.; Tamer, U., Paper membrane-based SERS platform for the determination of glucose in blood samples. Analytical bioanalytical chemistry 2015, 407 (27), 8243-8251.
    106. El-Zahry, M. R.; Refaat, I. H.; Mohamed, H. A.; Lendl, B., Sequential SERS determination of aspirin and vitamin C using in situ laser-induced photochemical silver substrate synthesis in a moving flow cell. Analytical bioanalytical chemistry 2016, 408 (17), 4733-4741.
    107. Cholula-Díaz, J. L.; Lomelí-Marroquín, D.; Pramanick, B.; Nieto-Argüello, A.; Cantú-Castillo, L. A.; Hwang, H., Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS. Colloids and Surfaces B: Biointerfaces 2018, 163, 329-335.
    108. Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H.; Xie, Y.-H., Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure. Analytical Chemistry 2015, 87 (20), 10255-10261.
    109. Yu, X.; He, X.; Yang, T.; Zhao, L.; Chen, Q.; Zhang, S.; Chen, J.; Xu, J., Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers. International journal of nanomedicine 2018, 13, 2337-2347.
    110. Li, H.; Yang, Q.; Hou, J.; Li, Y.; Li, M.; Song, Y., Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection. Advanced Functional Materials 2018, 28 (21), 1800448.
    111. Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G., The radiative cooling of selective surfaces. Solar Energy 1975, 17 (2), 83-89.
    112. Bartoli, B.; Catalanotti, S.; Coluzzi, B.; Cuomo, V.; Silvestrini, V.; Troise, G., Nocturnal and diurnal performances of selective radiators. Applied Energy 1977, 3 (4), 267-286.
    113. Granqvist, C.; Hjortsberg, A., Surfaces for radiative cooling: Silicon monoxide films on aluminum. Applied Physics Letters 1980, 36 (2), 139-141.
    114. Berdahl, P., Radiative cooling with MgO and/or LiF layers. Applied optics 1984, 23 (3), 370-372.
    115. Gentle, A. R.; Smith, G. B., Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles. Nano Letters 2010, 10 (2), 373-379.
    116. Raman, A. P.; Anoma, M. A.; Zhu, L.; Rephaeli, E.; Fan, S., Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540-544.
    117. Rephaeli, E.; Raman, A.; Fan, S., Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling. Nano Letters 2013, 13 (4), 1457-1461.
    118. Hossain, M. M.; Jia, B.; Gu, M., A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials 2015, 3 (8), 1047-1051.
    119. Zhai, Y.; Ma, Y.; David, S. N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355 (6329), 1062-1066.
    120. Peng, Y.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P.-C.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D. S.; Lee, H. R.; Fan, S.; Cui, Y., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability 2018, 1 (2), 105-112.
    121. Mandal, J.; Fu, Y.; Overvig, A. C.; Jia, M.; Sun, K.; Shi, N. N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362 (6412), 315-319.
    122. Choi, S. H.; Kim, S.-W.; Ku, Z.; Visbal-Onufrak, M. A.; Kim, S.-R.; Choi, K.-H.; Ko, H.; Choi, W.; Urbas, A. M.; Goo, T.-W.; Kim, Y. L., Anderson light localization in biological nanostructures of native silk. Nature Communications 2018, 9 (1), 452.
    123. Shi, N. N.; Tsai, C.-C.; Carter, M. J.; Mandal, J.; Overvig, A. C.; Sfeir, M. Y.; Lu, M.; Craig, C. L.; Bernard, G. D.; Yang, Y.; Yu, N., Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light: Science & Applications 2018, 7 (1), 37.
    124. Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; Dai, J.; Chen, C.; Aili, A.; Vellore, A.; Martini, A.; Yang, R.; Srebric, J.; Yin, X.; Hu, L., A radiative cooling structural material. Science 2019, 364 (6442), 760-763.
    125. Yu, C.-C.; Chou, S.-Y.; Tseng, Y.-C.; Tseng, S.-C.; Yen, Y.-T.; Chen, H.-L., Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 2015, 7 (5), 1667-1677.
    126. Holmberg, M.; Berg, J.; Stemme, S.; Ödberg, L.; Rasmusson, J.; Claesson, P., Surface Force Studies of Langmuir–Blodgett Cellulose Films. Journal of Colloid and Interface Science 1997, 186 (2), 369-381.
    127. Lee, H. K.; Lee, Y. H.; Zhang, Q.; Phang, I. Y.; Tan, J. M. R.; Cui, Y.; Ling, X. Y., Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing. ACS Applied Materials & Interfaces 2013, 5 (21), 11409-11418.
    128. Liu, X.; Zong, C.; Ai, K.; He, W.; Lu, L., Engineering Natural Materials as Surface-Enhanced Raman Spectroscopy Substrates for In situ Molecular Sensing. ACS Applied Materials & Interfaces 2012, 4 (12), 6599-6608.
    129. Xu, B.-B.; Zhang, Y.-L.; Zhang, W.-Y.; Liu, X.-Q.; Wang, J.-N.; Zhang, X.-L.; Zhang, D.-D.; Jiang, H.-B.; Zhang, R.; Sun, H.-B., Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency. Advanced Optical Materials 2013, 1 (1), 56-60.
    130. Chou, S.-Y.; Yu, C.-C.; Yen, Y.-T.; Lin, K.-T.; Chen, H.-L.; Su, W.-F., Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry 2015, 87 (12), 6017-6024.
    131. Mattox, D. M., Chapter 2 - Substrate (“Real”) Surfaces and Surface Modification. In Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), Mattox, D. M., Ed. William Andrew Publishing: Boston, 2010; pp 25-72.
    132. Lindner, M.; Rodler, N.; Jesdinszki, M.; Schmid, M.; Sängerlaub, S., Surface energy of corona treated PP, PE and PET films, its alteration as function of storage time and the effect of various corona dosages on their bond strength after lamination. Journal of Applied Polymer Science 2018, 135 (11), 45842.
    133. Messmer, C.; Bilello, J. C., The surface energy of Si, GaAs, and GaP. Journal of Applied Physics 1981, 52 (7), 4623-4629.
    134. Skriver, H. L.; Rosengaard, N. M., Surface energy and work function of elemental metals. Physical Review B 1992, 46 (11), 7157-7168.
    135. Lindner, E.; Arias, E., Surface free energy characteristics of polyfluorinated silane films. Langmuir 1992, 8 (4), 1195-1198.
    136. Bishop, C. A., Chapter 5 - Process Diagnostics and Coating Characteristics. In Vacuum Deposition Onto Webs, Films and Foils (Third Edition), Bishop, C. A., Ed. William Andrew Publishing: Boston, 2015; pp 85-128.
    137. Zhang, X.; Xiao, X.; Dai, Z.; Wu, W.; Zhang, X.; Fu, L.; Jiang, C., Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles. Nanoscale 2017, 9 (9), 3114-3120.
    138. Jeon, T. Y.; Kim, D. J.; Park, S.-G.; Kim, S.-H.; Kim, D.-H., Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence 2016, 3 (1), 18.
    139. Kurouski, D.; Large, N.; Chiang, N.; Greeneltch, N.; Carron, K. T.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P., Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis. Analyst 2016, 141 (5), 1779-1788.
    140. Li, C.; Huang, Y.; Lai, K.; Rasco, B. A.; Fan, Y., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 2016, 65, 99-105.
    141. Bell, S. E. J.; Sirimuthu, N. M. S., Quantitative surface-enhanced Raman spectroscopy. Chemical Society Reviews 2008, 37 (5), 1012-1024.
    142. Dinis-Oliveira, R. J.; Duarte, J. A.; Sánchez-Navarro, A.; Remião, F.; Bastos, M. L.; Carvalho, F., Paraquat Poisonings: Mechanisms of Lung Toxicity, Clinical Features, and Treatment. Critical Reviews in Toxicology 2008, 38 (1), 13-71.
    143. Koo, J.-R.; Yoon, J.-W.; Han, S.-J.; Choi, M.-J.; Park, I.-I.; Lee, Y.-K.; Kim, S.-G.; Oh, J.-E.; Seo, J.-W.; Kim, H.-J.; Noh, J.-W., Rapid Analysis of Plasma Paraquat Using Sodium Dithionite As a Predictor of Outcome in Acute Paraquat Poisoning. The American Journal of the Medical Sciences 2009, 338 (5), 373-377.
    144. Wiley, J. H.; Atalla, R. H., Band assignments in the raman spectra of celluloses. Carbohydrate Research 1987, 160, 113-129.
    145. He, H.; Li, P.; Tang, X.; Lin, D.; Xie, A.; Shen, Y.; Yang, L., Developing cysteamine-modified SERS substrate for detection of acidic pigment with weak surface affinity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 212, 293-299.
    146. Lin, S.; Hasi, W.-L.-J.; Lin, X.; Han, S.-q.-g.-w.; Lou, X.-T.; Yang, F.; Lin, D.-Y.; Lu, Z.-W., Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates. Analytical Methods 2015, 7 (12), 5289-5294.
    147. Cesaratto, A.; Centeno, S. A.; Lombardi, J. R.; Shibayama, N.; Leona, M., A complete Raman study of common acid red dyes: application to the identification of artistic materials in polychrome prints. Journal of Raman Spectroscopy 2017, 48 (4), 601-609.
    148. Ai, Y.-j.; Liang, P.; Wu, Y.-x.; Dong, Q.-m.; Li, J.-b.; Bai, Y.; Xu, B.-J.; Yu, Z.; Ni, D., Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chemistry 2018, 241, 427-433.
    149. Chook, S. W.; Chia, C. H.; Chan, C. H.; Chin, S. X.; Zakaria, S.; Sajab, M. S.; Huang, N. M., A porous aerogel nanocomposite of silver nanoparticles-functionalized cellulose nanofibrils for SERS detection and catalytic degradation of rhodamine B. RSC Advances 2015, 5 (108), 88915-88920.
    150. Song, J.; Zhang, Y.; Huang, Y.; Fan, Y.; Lai, K., Rapid Tartrazine Determination in Large Yellow Croaker with Ag Nanowires Using Surface-Enhanced Raman Spectroscopy. Nanomaterials 2018, 8 (12).
    151. Meng, J.; Qin, S.; Zhang, L.; Yang, L., Designing of a novel gold nanodumbbells SERS substrate for detection of prohibited colorants in drinks. Applied Surface Science 2016, 366, 181-186.
    152. Xie, Y.; Chen, T.; Cheng, Y.; Wang, H.; Qian, H.; Yao, W., SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 132, 355-360.
    153. Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L., Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011, 6 (10), 1612-1631.
    154. Li, T.; Zhu, M.; Yang, Z.; Song, J.; Dai, J.; Yao, Y.; Luo, W.; Pastel, G.; Yang, B.; Hu, L., Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials 2016, 6 (22), 1601122.
    155. Athanasiadou, D.; Jiang, W.; Goldbaum, D.; Saleem, A.; Basu, K.; Pacella, M. S.; Böhm, C. F.; Chromik, R. R.; Hincke, M. T.; Rodríguez-Navarro, A. B.; Vali, H.; Wolf, S. E.; Gray, J. J.; Bui, K. H.; McKee, M. D., Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances 2018, 4 (3).
    156. Putra, R. S.; Liyanita, A.; Arifah, N.; Puspitasari, E.; Sawaludin; Hizam, M. N., Enhanced Electro-Catalytic Process on the Synthesis of FAME Using CaO from Eggshell. Energy Procedia 2017, 105, 289-296.
    157. Andreas, B.; Christian, Z., What vibrations tell us about proteins. Quarterly Reviews of Biophysics 2002, 35 (4), 369-430.
    158. Kwon, H.-B.; Lee, C.-W.; Jun, B.-S.; Yun, J.-d.; Weon, S.-Y.; Koopman, B., Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling 2004, 41 (1), 75-82.
    159. Totten, D. K.; Davidson, F. D.; Wyckoff, R. W. G., Amino-Acid Composition of Heated Oyster Shells. Proceedings of the National Academy of Sciences of the United States of America 1972, 69 (4), 784-785.
    160. Arputha Latha, A.; Anbuchezhiyan, M.; Kanakam, C.; Kumarasamy, S., Synthesis and characterization of γ-glycine - A nonlinear optical single crystal for optoelectronic and photonic applications. 2017; Vol. 35.
    161. Subramanian, A.; Rodriguez-Saona, L., Chapter 7 - Fourier Transform Infrared (FTIR) Spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control, Sun, D.-W., Ed. Academic Press: San Diego, 2009; pp 145-178.
    162. Li, T.; Song, J.; Zhao, X.; Yang, Z.; Pastel, G.; Xu, S.; Jia, C.; Dai, J.; Chen, C.; Gong, A.; Jiang, F.; Yao, Y.; Fan, T.; Yang, B.; Wågberg, L.; Yang, R.; Hu, L., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances 2018, 4 (3).
    163. Palanti, S.; Feci, E.; Predieri, G.; Vignali, F., COPPER ANCHORED TO AMINO-GROUP FUNCTIONALIZED SILICA GEL AS WOOD PRESERVATIVE AGAINST BROWN-ROT DECAY. 2009; Vol. 12, p 259-266.
    164. Cássia Viana, L.; Bolzon de Muniz, G. I.; Gherardi Hein, P. R.; Esteves Magalhães, W. L.; Carneiro, M. E., NIR spectroscopy can evaluate the crystallinity and the tensile and burst strengths of nanocellulosic films. Maderas. Ciencia y tecnología 2016, 18 (3), 493-504.
    165. Afrin, T.; Tsuzuki, T.; Wang, X., UV absorption property of bamboo. The Journal of The Textile Institute 2012, 103 (4), 394-399.
    166. Kapoor, S.; Kundu, S. C., Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomaterialia 2016, 31, 17-32.
    167. Cao, Y.; Wang, B., Biodegradation of Silk Biomaterials. International Journal of Molecular Sciences 2009, 10 (4), 1514-1524.
    168. Perotto, G.; Zhang, Y.; Naskar, D.; Patel, N.; Kaplan, D. L.; Kundu, S. C.; Omenetto, F. G., The optical properties of regenerated silk fibroin films obtained from different sources. Applied Physics Letters 2017, 111 (10), 103702.
    169. Hayashi, T.; Mukamel, S., Vibrational−Exciton Couplings for the Amide I, II, III, and A Modes of Peptides. The Journal of Physical Chemistry B 2007, 111 (37), 11032-11046.
    170. Miyazawa, T.; Masuda, Y.; Fukushima, K., Chain conformation and amide V band of polypeptides. Journal of Polymer Science 1962, 62 (174), S62-S64.
    171. Balčytis, A.; Ryu, M.; Wang, X.; Novelli, F.; Seniutinas, G.; Du, S.; Wang, X.; Li, J.; Davis, J.; Appadoo, D.; Morikawa, J.; Juodkazis, S., Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. Materials 2017, 10 (4), 356.
    172. Chen, Z.; Zhu, L.; Raman, A.; Fan, S., Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nature Communications 2016, 7, 13729.
    173. Zhao, D.; Aili, A.; Zhai, Y.; Lu, J.; Kidd, D.; Tan, G.; Yin, X.; Yang, R., Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule 2019, 3 (1), 111-123.
    174. Kou, J.-l.; Jurado, Z.; Chen, Z.; Fan, S.; Minnich, A. J., Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics 2017, 4 (3), 626-630.
    175. Bhatia, B.; Leroy, A.; Shen, Y.; Zhao, L.; Gianello, M.; Li, D.; Gu, T.; Hu, J.; Soljačić, M.; Wang, E. N., Passive directional sub-ambient daytime radiative cooling. Nature Communications 2018, 9 (1), 5001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE