簡易檢索 / 詳目顯示

研究生: 黃中青
Huang, Jhong-Cing
論文名稱: 迴路式熱虹吸之冷凝器的可視化實驗
Visualization Experiments on the Condenser of Loop Thermosyphon
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員: 許文震
簡國祥
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 迴路式熱虹吸冷凝器可視化實驗冷凝現象
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以可視化實驗觀察迴路式熱虹吸之冷凝器的現象與冷凝熱阻的量測,分為普通親水玻璃與疏水玻璃,比較兩者的冷凝現象與熱阻。另外也觀察蒸發器之現象與量測熱阻。觀察發現親水玻璃的冷凝現象為複雜凝結模式,在前段為滴式凝結;中段為過渡區;後段為膜式凝結,冷凝水會因表面張力作用,聚集成厚液膜區而流下,亦即液膜沿周長分布不均勻。而疏水玻璃之冷凝現象較單一,冷凝整段皆為滴式凝結。冷凝熱阻在考慮玻璃壁面熱阻後,可推估液膜熱阻大致在O(1) K-cm2/W。蒸發器方面,採用薄膜蒸發。其內水位高度一定,並在高熱量下,並未發現有沸騰蒸發。而蒸發熱阻在35.6 - 92.5 W時,約為0.28 - 0.14 K-cm2/W。


    摘要 目錄 圖表目錄 第一章 緒論 1.1研究背景 1.2基本原理與文獻回顧 1.2.1熱虹吸熱管原理 1.2.2迴路式熱虹吸 1.3研究動機與目的 第二章 實驗設備與方法 2.1簡介 2.2迴路式熱虹吸實驗 2.2.1實驗裝置 2.2.2實驗架構與配置 2.2.3實驗步驟 2.2.3.1前置作業流程 2.2.3.2實驗流程 2.2.4實驗參數與實驗數據計算 第三章 實驗結果與討論 3.1冷凝過程 3.1.1普通親水玻璃 3.1.1.1冷凝現象與溫度分布 3.1.1.2冷凝熱量Qc 3.1.2疏水玻璃 3.2蒸發器 3.3 蒸發器與液體通道水位差Δh 第四章 結論 參考文獻

    [1] A. Samanci, A. Berber, Experimental investigation of single-phase and two-1phase closed thermosyphon solar water heater systems, Scientific Research and Essays, Vol. 6(4), pp. 688-693, 18 Feb., 2011
    [2] J. Huang, S. Pu, W. Gao, Y.Que, Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger, Energy, 35 (2010) 3563-3568
    [3] B. R. Chen, Y. W. Chang, W. S. Lee, S. L. Chen, Long-term thermal performance of a two-phase thermosyphon solar water heater, Solar Energy, 83 (2009) 1048-1055
    [4] C.C. Chien, C.K. Kung, C.C. Chang, W.S. Lee, C.S. Jwo, S.L. Chen, Theoretical and experimental investigations of a two-phase thermosyphon solar water heater, Energy, 36 (2011) 415-423
    [5] A. Samba, H. Louahlia-Gualous, S. L. Masson, D. Nörterhäuser, Two-phase thermosyphon loop for cooling outdoor telecommunication equipments, Applied Thermal Engineering, 50 (2013) 1351-1360
    [6] T. E. Tsai, H. H. Wu, C. C. Chang, S. L. Chen, Two-phase closed thermosyphon vapor-chamber system for electronic cooling, International Communications in Heat and Mass Transfer, 37 (2010) 484-489
    [7] T. W. Davis, S. V. Garimella, Thermal resistance measurement across a wick structure using a novel thermosyphon test chamber, Experimental Heat Transfer, 21:143-154, 2008
    [8] A. Alizadehdakhel, M. Rahimi, A. A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, International Communications in Heat and Mass Transfer, 37 (2010) 312-318
    [9] S. Liu, J. Li, Q. Chen, Visualization of flow pattern in thermosyphon by ECT, Flow Measurement and Instrumentation, 18 (2007) 216-222
    [10] P. Amatachaya, W. Srimuang, Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT), International Communications in Heat and Mass Transfer, 37 (2010) 293-298
    [11] A. Franco, S. Filippeschi, Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results, Microgravity Sci. Technol., (2012) 24:165-179
    [12] W. Qu, Hydrodynamics of two-phase loop thermosyphon, frontiers in heat pipes , 1, 023004 (2010)
    [13] F. H. Milanez, M. B. H. Mantelli, Heat transfer limit due to pressure drop of a loop thermosyphon, 15th International Heat Pipe Conference, Clemson, USA, April 25-30, 2010
    [14] S. W. Chang, K. F. Chiang, C. Y. Lin, Loop thermosyphon electronic cooling device operated at sub-atmospheric pressure, International 10th Heat Pipe Symposium, Taipei, Taiwan, Nov. 6-9, 2011
    [15] 康尚文、黃俊賢,迴路式虹吸熱管之研製與可視化觀察,熱管理產業通訊,第24期
    [16] S. L. Mahmood, N. Bagha, M.A.R. Akhanda, A.K.M.S. Islam, Heat transfer characteristics inside an evaporator of a two-phase closed loop thermosyphon with saw tooth ribbed evaporator surface, Advanced Design and Manufacture to Gain a Competitive Edge, pp. 111-120, 2008
    [17] R. Khodabandeh, R. Furberg, Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop, Int. J. of Therm. Sci., 49(2010)1183-1192
    [18] 陳聖謙,迴路式熱虹吸管之薄膜蒸發,國立臺灣大學機械工程學研究所碩士論文,六月,2006
    [19] W. C. Wang, X. H. Ma, Z. D. Wei, P. Yu, Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations, Int. J. Heat Mass Transfer, 41(1998)4341-4349
    [20] J.W. Rose, Dropwise condensation theory and experiment: a review, Proc. Instrn. Mech. Engrs. Part A: Journal of Power and Energy, 216(2002)115-128.
    [21] O. Kabov, I. Marchuk, A. Glushchuk, Y. Lyulin, Enhancement of vapour condensation in heat pipes, 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012
    [22] R.C.Chu, R.E. Simons, G.M. Chrysle, Experimental investigation of an enhanced thermosyphon heat loop for cooling of a high performance electronics module, 15th IEEE SEMI-THERMTM Symposium, 1999.
    [23] Z. Huang, J. Zhang, J. Cheng, S. Xu, P. Pi, Z. Cai, X. Wen, Z. Yang, Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate, Appl. Surface Sci. 259(2012)142–146.
    [24] S. L. Chen, F. M. Gerner, C. L. Tien, General film condensation correlations, Experimental Heat Transfer, vol. 1, pp. 93-107, 1987

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE