研究生: |
王信智 Wang,Shen-Tsu |
---|---|
論文名稱: |
供應鏈管理之供給與需求不確定量化模式研究-以筆記型電腦產業為例 Research on Uncertain Quantitative Model of Supply and Demand of Supply Chain Management: Using Notebook Computer Industry as an Example |
指導教授: |
劉志明
Liu,Chih-Ming 林文燦 Lin,Wen-Tsann |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 筆記型電腦產業 、需求與供給不確定性 、品類管理 、客製化程度 、多目標規劃模式 |
外文關鍵詞: | notebook computer industry, uncertain demand and supply, category management, customization degree, multi-objective planning model |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
筆記型電腦產業具有需求與供給不確定性情況存在,本研究發展的品類管理決策方法能解決顧客需求不確定性與零組件供給不確定性;另一方面,解決顧客需求不確定問題可使用延遲策略,製造商供應不確定所產生的傷害包括無法滿足顧客訂單上的產品型式,因此,本研究發展客製化之延遲策略模式預測客製化程度以解決顧客需求不確定與製造商供應不確定。
本研究提出適合台灣各種不同規模和經營環境的筆記型電腦產業之零組件管理方法,利用品類管理觀念以解決顧客需求不確定與供應商供給不確定性的問題,在關鍵零組件定義上,可使用單位零組件價格與供應廠商數目等因素作灰關連分析排列,排列出影響關鍵零組件之因素,接著以ABC零組件存貨權重之倉儲空間調整演算法、不同歸屬函數設定方法、解模糊化的德菲層級分析法與指數迴歸函數法,決定不同類別零組件之適當品類管理參數設定。透過所提出之品類管理決策方法,可以估計滿足客戶需求的存貨水準以解決需求不確定並且估計零組件從採購到入庫所需的前置時間以解決供給不確定,經由事先模擬各種可能之訂單變更狀況,來降低缺料風險及存貨之成本。
□
另一方面,筆記型電腦產業之延遲策略應用,常以生產總成本最小、產品類型最大及平均組裝時間最小為量化目標,同時以顧客需求的零組件模組種類及零組件模組存貨數量為決策變數,因此,本研究構建一延遲策略多目標規劃模式,在需求不確定性函數中,則應用需求頻率及需求量分別服從卜瓦松分配及常態分配,由於各個目標式的單位不相同,因此,可以使用ε限制法求解多目標規劃問題;再來,利用多目標規劃所求得的生產成本與顧客基本需求的零組件模組等參數,求出最佳客製化程度與分析利潤函數中各因子間的相互關係,製y商可以依據市場需求的不同型式,配合製造商在供給不確定情況下想要達成的利潤,以製造商利潤最大為目標,訂定最合適的客製化程度。最後,以一家筆記型電腦廠商為例進行實證分析,提供筆記型電腦業者在執行品類管理決策方法與產品客製化程度決定;並分析各項參數的敏感度,提供決策者相關建議,以作為進行相關決策時的參考依據。
There is uncertain demand and supply in the notebook computer industry. This research develops a category management decision-making method can solve the problem of dealing with uncertain customer demand and supply. On the other hand, uncertain customer demand can be solved by using a postponement strategy. Manufacturers’ uncertain supply situation includes their failure to satisfy the product type specifications of clients’ orders. Thus, this research develops a postponement strategy of customization to predict the customization degree, in order to solve uncertain customer demand and manufacturers’ supply.
This research suggests a supply part management that is suitable for the notebook computer industry, with varied scales and operational environments in Taiwan, and solves the uncertainty of customer demand and supplier supply with the concept of category management. As for definitions of key supply parts, gray correlation sequencing analysis was conducted with unit price of supply parts and the number of suppliers, the gray sequencing correlation analysis was applied to sort the effect factors of key supply parts. Subsequently, with ABC of inventory weight re–allocation algorithm, different membership function constructions, Delphi analysis of defuzzification and exponential regression function method were used to determine the proper setting of category management parameters of supply parts in different categories. The category management decision-making method can be used to estimate the inventory level required to satisfy customer demand, to solve uncertain demand, as well as to estimate the lead time of supply parts from purchase to stock, thereby solving the problem of uncertain supply. By simulating different possible changes of orders, the risk of part shortages and cost of stock part can both be reduced.
In addition, postponement strategy in notebook computer industry tends to treat minimum total production cost, maximum product type and minimum assembly time as the objects of quantification. Besides, the kinds of supply part modules of customer demand and inventory amount of supply part module are regarded as the decision variables. Thus, this research constructs a postponement multi-objective planning model. In an uncertain demand function, demand frequency and demand amount are used to meet Poisson distribution and Normal distribution. Since the units of the objectives differ, multi-objective planning can be realized via ε-constraint method. Besides, optimized customization degree can be obtained and the correlation among the factors of profit functions can be analyzed according to the results of multi-objective planning considering the parameters of production cost and the supply part module of basic customer demand. Manufacturers can construct the most proper customization degree according to different types of market demand and the profit objectives in supply uncertainty, with the goal of maximizing profits. Finally, an empirical analysis was conducted on a notebook computer company to function as the reference for category management decision-making method and product customization degree of notebook computer companies. The sensitivity of the parameters was analyzed and related suggestions were provided.
1. 王小璠,2005,多準則決策分析,滄海圖書,第一版。
2. 林晉寬 與 劉明華,2006 , 台灣TFT-LCD面板產業關鍵零組件統治決策之研究,科技管理學刊,第11卷第1期,頁95-136。
3. 林聰明 與 吳水丕,1981,指數平滑法之選擇與應用,華泰書局,第一版。
4. 許志義,1994,多目標決策,五南圖書出版有限公司,第一版。
5. 許棟樑,1999,台灣筆記型電腦全面品質管理標竿建立及分析,行政院國家科學委員會專題研究計畫成果報告。
6. 陳立恆,2006,前瞻2006年台灣筆記型電腦產業發展趨勢,財團法人資訊工業策進會資訊市場情報中心 ,諮詢與知識計畫:研究報告。
7. 傅金宏, 2000,台灣筆記型電腦產業存貨管理決策支援系統研究,國立清華大學碩士論文。
8. 湯玲郎 與 王瓊敏,2000,筆記型電腦之關鍵零組件價格預測研究,科技管理學刊,第5卷第3期,頁135-153。
9. 楊智強,2003,產品客製化之製造整合研究-以台灣電腦業CTO模式為例,元智大學管理研究所。
10. 簡禎富,2007,決策分析與管理:全面決策品質提升之架構與方法,雙葉書廊。
11. Ahmed, S., 2002, Semiconductor tool planning via multi-stage stochastic programming. in Proceeding of International Conference on Modeling and Analysis of Semiconductor Manufacturing, Tempe, Arizona, U.S.A., April, pp. 153-157.
12. Axsater, S. and Zhang, W., 1999, A joint replenishment police for multi-echelon inventory control. International Journal of Production Economics, 59, pp. 243-250.
13. Azzaro-Pantel, C., Floquet, P., Pibouleau L. and Domenech, S., 1997, A fuzzy approach for performance modeling in a batch plant: application to semiconductor manufacturing. IEEE Transaction on Fuzzy System, 5(3), pp. 338-357.
14. Balkhi, Z. T. and Benkherouf, L., 2004, On an inventory model for deteriorating items with stock dependent and time-varying demand rates. Computers & Operations Research, 31, pp. 223-240.
15. Bang-Jensen, J., Gutin, G. and Yeo, A., 2004, When the greedy algorithm fails. Discrete Optimization, 1, pp. 121-127.
16. Barahona, F., Bermon, S., Gunluk, O. and Hood, S., 2005, Robust capacity planning in semiconductor manufacturing. Naval Research Logistics, 52(5), pp. 459-468.
17. Becerra, R. L. and Coello, C. A., 2006, Solving hard multiobjective optimization problems using ε-constraint with cultured differential evolution. Lecture Notes in Computer Science, 4193, pp. 543-552.
18. Bendall, G. and Margot, F., 2006, Greedy type resistance of combinatorial problems. Discrete Optimization, 3, pp. 288-298.
19. Bitran, G. R. and Mondschein, S. V., 1997, Periodic pricing of seasonal products inretailing. Management Science, 43(1), pp.64-79.
20. Boynton, A. C., Victor, B. and Pine II, B. J., 1993, New competitive strategies:
Challenges to organizations and information technology. IBM Systems Journal, 32(1), pp. 40-64.
21. Bradlow, E. T. and Rao, V. R., 2000, A hierarchical bayes model for assortment choice. Journal of Marketing Research, 37, pp. 259-268.
22. Brown, R. G.., 1962, Smoonthing, forecasting and prediction of discrete time Series. Englewood Cliffs N. J.: Prentice-Hall.
23. Burnetas, A. N. and Smith, C. E., 2000, Adaptive ordering and pricing for perishable products. Operation Research, 48(3), pp. 436-443.
24. Chang, S. C., Yang, C. L. and Sheu, C., 2003, Manufacturing flexibility and business strategy: An empirical study of small and medium sizes firms. International Journal of Production Economics, 83(1), pp. 13-26.
25. Chen, C. T., 2001a, A fuzzy to select the location of the distribution center. Fuzzy Sets and Systems, 118, pp. 65-74.
26. Chen, S. H. and Hsieh, C. H., 1999, Graded mean integration representation of
generalized fuzzy number. Journal of Chinese Fuzzy Systems, 5(2), pp. 1-7.
27. Chen S. J. and Huang, C. L., 2002, Fuzzy multiple attribute decision making methods and applications. New York: Springer-Verlag.
28. Chen, S. M., 2001b, Fuzzy group decision making for evaluating the rate of aggregative risk in software development. Fuzzy Sets and System, 118, pp. 75-88.
29. Chen, T. C., 2001c, Applying linguistic Decision-Making method to deal with service quality evaluation problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based System, 9, pp. 103-114.
30. Chopra, S. and Meindl, P., 2004, Supply chain management: strategy, planning and operation. New Jersey: Prentice Hall, Second edition.
31. Christopher, M., 1992, Logistics and supply chain management. Lodon: Pitmin
Publishing.
32. Chu, Y. F. and Lin, W. C., 2004, A study of inventory model based on order quantity and lead time as decision variables ─ demand frequency and quantities corresponding poisson and normal distribution. Journal of the Chinese Institute of Industrial Engineers, 21(4), pp. 384-394.
33. Cohon, J. L., 1978, Multiobjective programming, NewYork: Academic Press.
34. Das, S. K. and Malek, L. A., 2003, Modeling the flexibility of order quantities and lead-time in supply chain. International Journal of Production Economics, 85(2), pp. 171-181.
35. Datskov, I. V., Ostrovsky, G. M. Acheniea, L. E. K. and Volin, Y. M., 2006, An approach to multicriteria optimization under uncertainty. Chemical Engineering Science, 61, pp. 2379–2393.
36. Deng, J. L., 1982, Control problems of grey systems. System and Control Letters, 1(5), pp. 288-294.
37. Dewan, R., Jing, B. and Seidmann, A., 2003, Product customization and price
competition on the internet. Management Science, 49(8), pp. 1055-1070.
38. Donk, D. P. and Vaart, T., 2005, A case of shared resources, uncertainty and supply chain integration in the process industry. Int. J. Production Economics, 96, pp. 97–108.
39. Dupre, K. and Gruen, T. W., 2004, The use of category management practices to obtain a sustainable competitive advantage in the fast-moving-consumer-goods industry. Journal of Business & Industrial Marketing, 19(7), pp. 444-459.
40. Dussart, C., 1998, Category management: Strengths, limits developments. European Management Journal, 16(1), pp. 50-62.
41. Ernst, R. and Kamrad, B., 2000, Evaluation of supply chain structures through
modularization and postponement. European Journal of Operational Research, 124, pp. 495-510.
42. Feitzinger, E. and Lee, H. L., 1997, Mass customization at Hewlett-Packard;The power of postponement. Harvard Business Review, 75(1), pp. 116-121.
43. Feng, D. Z., Yamashiro, M. and Zhang, L. B., 2005, Economic production quantity for supply chain system with volume flexibility. IEEE Conference Proceeding, pp. 302-308.
44. Feng, Y., 1995, Application of TOPSIS in investment decision making of oilfield development. Journal of Petroleum Institute, 27(10), pp. 103-112.
45. Fisher, M. L., 1997, What is the right supply chain for your product? Harvard
Business Review, March-April, pp. 105-116.
46. Fliedner, G., 1999, An investigate variable time series forecast strategies with specific subaggregate time series statistical correlation. Computers & Operations Research, 26, pp. 1133-1149.
47. Fogarty, D. W., Blackstone, J. H., and Hoffmann, T. R., 1991, Production and inventory management. South-Western.
48. Forrester, J. W., 1961, Industrial dynamics. MIT Press, Cambridge, MA.
49. Gao, Z. and Tang, L., 2003, A multi-objective model for purchasing of bulk raw materials of a large-scale integrated steel plant. International Journal of Production Economics, 83, pp. 325-334
50. Gerchak, Y. and Parlar, M., 1987, A single period inventory problem with partially controllable demand. Computers & Operations Research, 14(1), pp. 1-9.
51. Grabot, B., Geneste, L., Reynoso-Castillo, G., and Verot, S., 2005, Integration of uncertain and imprecise orders in the MRP method. Journal of Intelligent Manufacturing, 16(2), pp. 215-34.
52. Gerwin, D., 1993, Manufacturing flexibility: A strategic perspective. Management Science, 39(4), pp. 395-410.
53. Grean, M. and Shaw, M. J., 2002, Supply chain integration through information sharing: Channel partnership between Wal-Mart and Procter & Gamble.
http://citebm.cba.uiuc.edu/ IT_cases/Graen-Shaw-PG.pdf
54. Gu, X. J., Qi, G. N., Yang, Z. X. and Zheng, G. J., 2002, Research of the optimization methods for mass customization. Journal of Materials Processing Technology, 129, pp. 507–512.
55. Gullu, R., Onol, E. and Erkip, N., 1999, Analysis of an inventory system under supply uncertainty. International journal of Production Economics, 59, pp. 377-385.
56. Gupta, A. K. and Sivakumar, A. I., 2002, Simulation based multiobjective schedule optimization in semiconductor manufacturing. Proceeding of the Simulation Conference, pp. 1862-1870.
57. Hamalainen, R. P. and Mantysaari, J., 2002, Dynamic multi-objective heating optimization. European Journal of Operational Research, 142, pp. 1–15.
58. Han, Y., 1995, Application of TOPSIS to measuring the international market competitive pattern. Journal of University of Electronic Science and Technology of China, 36(3), pp. 124-143.
59. Hannan, E. L., 1981, Linear programming with multiple goals. Fuzzy Sets and Systems, 6, pp. 235-248.
60. Hariga, M. and Haouari, M., 1999, An EOQ lot sizing model with random supplier capacity. International Journal of Production Economics, 58, pp. 39-47.
61. Harland, C., Brenchley, R., and Walker, H., 2003, Risk in supply networks. Journal of Purchasing & Supply Management, 8(2), pp. 51- 62.
62. Hellendoorn, H. and Thomas, C., 1995, On quality Defuzzification-theory and an application example. Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems. pp. 167-176.
63. Hollier, R. H., Mak, K. L., and Lam, C. L., 1995, An inventory model for items with demands satisfied from stock or by special deliveries. International Journal of Production Economics, 42, pp. 229-236.
64. Hoshino, K., 1996, Criterion for choosing ordering policies Between fixed-size and fixed-interval, pull-type and push-type. Journal of Production Economics, 44, pp. 91 - 95.
65. Hsu, S. C., Wang, W. H. and Lee, C. E., 2003, Booking capacity planning for fables. Journal of the Chinese Institute of Industrial Engineers, 20(6), pp. 575-598.
66. Hua, Z., Li, S. and Liang, L., 2006, Impact of demand uncertainty on supply chain cooperation of single-period products. Int. J. Production Economics, 100, pp. 268–284.
67. Hwang, C. L. and Yoon, K., 1981, Multiple attribute decision making methods and application. New York: Springer-Verlag.
68. Ishii, H. and Konno, T., 1998, A stochastic inventory problem with fuzzy shortage cost. European Journal of Operational Research, 106, pp. 90-94.
69. Joines, J. A., Gupta, D. Gokce, M. A., King, R. E. and Kay, M. G., 2002, Supply chain multiobjective simulation optimization. Proceeding of the Simulation Conference, pp. 1306-1314.
70. Kaipia, R. and Tanskanen, K., 2003, Vendor managed category management – an outsourcing solution in retailing. Journal of Purchasing and Supply Management, 9(4), pp. 165 - 175.
71. Kao, C. and Chyu, C. L., 2002, A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126, pp. 401-409.
72. Katagiri, H. and Ishii, H., 2002, Fuzzy inventory problems for perishable commodities. European Journal of Operational Research, 138(3), pp. 545-553.
73. Khorramshahgol, R. and Moustakis, V. S., 1988, Delphic Hierarchy Process (DHP): A method for priority setting derived from the Delphic method and Analytic Hierarchy Process. European Journal of Operational Research, 37, pp. 347-354.
74. Ko, M. D. and Chen, J. G., 1995, A Multiple-attribute decision-making approach to assess the disability of visually impaired workers. Journal of Multi-Criteria Decision Analysis, 4(3), pp. 160-176.
75. Kochen, M. and Badre, A. N., 1974, On the precision of adjectives which denote fuzzy sets. J. Cybernet, 4(1), pp. 49-59.
76. Krajewski, L. J. and Ritzman, L. P., 1999, Operations management-Strategy and analysis. New York: Addison-Wesley.
77. Kwon, O., Im, G. P. and Lee, K. C., 2007, MACE-SCM: A multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Systems with Applications, 33, pp. 690–705.
78. Lambert, D.M., and Stock, J. S., 1993, Strategic logistics management. New York: IRWIN.
79. Law, A. M., and Kelton, W. D., 1991, Simulation modeling and analysis. New York: McGraw-Hill.
80. Lau, A. H. L. and Lau, H. S., 2003, Effects of a demand-curve’s shape on the optimal solutions of a multi-echelon inventory/pricing model. European Journal of Operational Research, 147(3), pp. 530-548.
81. Leberling, H., 1981, On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems, 6, pp. 105-118.
82. Lee, H. L., 2002, Aligning supply chain strategies with product uncertainties.
California Management Review, 44(3), pp. 108-116.
83. Lee, H. L., Padamanabhan, V., and Whang, S., 1997, Information distortion
in a supply chain: The bullwhip effect. Management Science, 43(4), pp. 546-565.
84. Lee, H. M. and Yao, J. S., 1999, Economic order quantity in fuzzy sense for inventory without backorder model. Fuzzy Sets and System, 105(1), pp. 13-31.
85. Lee, H. T. and Chen, S. H., 2001, Fuzzy regression model with fuzzy input and output data for manpower forecasting. Fuzzy Sets and Systems, 119, pp. 205-213.
86. Li, C. G., Liao, X. F. and Yu, J. B., 2004, Tabu search for fuzzy optimization and applications. Information Sciences, 158, pp. 3-13.
87. Li , L., Kabadi, S. N. and Nair, K. P. K., 2002, Fuzzy models for single-period inventory problem. Fuzzy Sets and Systems, 132(3), pp. 273-289.
88. McGuire, T. W. and Staelin, R., 1983, An industry equilibrium analysis of
downstream vertical integration. Marketing Science, 2, pp. 161-191.
89. Medasani, S., Kim, J. and Krishnapuram, R., 1998, An overview of membership function generation techniques for pattern recognition. International Journal of Approximate Reasoning, 19, pp. 391-417.
90. Messac, A. and Mattson, C. A., 2004, Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA/ ASME/ ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, pp. 1-15.
91. Miller, J. G., Meyer A. D. and Nakane, J., 1992, Benchmarking global manufacturing – Understanding international suppliers, customers, and competitors. New York: IRWIN.
92. Min, H. and Zhou, G., 2002, Supply chain modeling:Past, present and future. Computers & Industrial Engineering, 43, pp. 231-249.
93. Mukhopadhyay, S.K. and Setoputro, R., 2005, Optimal return and modular design for build-to-order products. Journal of Operations Management, 23, pp. 496-506.
94. Nozick L. K. and Turnqist, M. A., 2001, Inventory, transportation, service quality and the location of distribution centers. European Journal of Operational Research, 129, pp. 362-371.
95. Pine Ⅱ, B.J., Victor, B. and Boynton A.C., 1993, Making mass customization work. Harvard Business Review, 7(5), pp. 108-119.
96. Ronald, S. T. L. and Yehuda, B., 2005, An inventory model for delayed customization: A hybrid approach. European Journal of Operational Research, 165(3), pp. 748-764.
97. Rondeau, L. and Ruelas, R. and Levrat, L. and Lamotte, M., 1997, A defuzzification method respecting the fuzzification. Fuzzy Sets and Systems, 86, pp. 311-320.
98. Saaty, T. L., 1980, The Analytic hierarchy process. New York: McCraw-Hill.
99. Sabri, E. H. and Beamon, B. M., 2000, A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28, pp. 581-598.
100. Scalem, M., 2003, Category management: A strategic perspective and it’s application in Indian context. technical report, MIS Group, Indian Institute of Management Calcutta, India, pp. 1-10.
101. Sheridan, M., Moore, C. and Nobbs, K., 2006, Fast fashion requires fast marketing: The role of category management in fast fashion positioning. Journal of Fashion Marketing and Management, 10(3), pp. 301-315.
102. Shin, S. and Cho, B. R., 2006, Robust design models for customer-specified bounds on process parameters. Journal of Systems Science and Systems Engineering, 15(1), pp. 2-18.
103. Slack, N., 1983, Flexibility as a manufacturing objective. International Journal of Production Management, 3(3), pp. 4-13.
104. Sliveira, G. D., Borenstein, D. and Fogliatto, F. S., 2001, Mass customization literature review and research directions. International Journal of Production Economics, 72(1), pp. 1-13.
105. Smith, S. A. and Agrawal, N., 2000, Management of multi-item retail inventory systems with demand substitution. Operations Research, 48(1), pp. 50-64.
106. Stevenson W. J., 2003, Instructor`s manual to accompany production/operations
management. New York: McGraw Hill.
107. Swaminathan, J. M., 1998, Modeling supply chain dynamics: A multiagent approach. Decision Sciences, 29(3), pp. 607-631.
108. Swaminathan, J. M., 2000, Tool capacity planning for semiconductor fabrication facilities under demand uncertainty. European Journal of Operational Research, 120, pp. 545-58.
109. Talluri, S., and Baker, R. C., 2002, A multi-phase mathematical programming approach for effective Supply chain design. European Journal of Operational Research, 41, pp. 544- 558.
110. Tanaka, H., Uejima, S. and Asai, K., 1982, Linear regression analysis with fuzzy model. IEEE Trans. Sys. Man and Cyber, SMC-12(6), pp. 903-907.
111. Teng, J. Y. and Tzeng, G. H., 1996, Fuzzy multicriteria ranking of urban transportation investment alternatives. Transportation Planning and Technology, 20(1), pp. 15–31.
112. Tseng, F. M. and Tzeng, G. H., 2002, A fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets and Systems, 126, pp. 367-376.
113. Tseng, F. M., Tzeng, G. H., Yu, H. C. and Yuan, B. J. C., 2001, Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets and Systems, 118, pp. 9-19.
114. Van Weele, A., 1984, Purchasing performance measurement and evaluation. Journal of Purchasing and Materials Management, 20, pp. 16-23.
115. Viswanathan, M. and Terry, C., 1999, Understanding how product attributes infkuence product categorization and validation of Fuzzy Ste-based measures of gradedness in product catefories. Journal of Marketing Research, 191, pp. 75-94.
116. Vujosevic, M., Petrovic, D. and Petrovic, R., 1996, EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45, pp. 499-504.
117. Waiel, F. A. and Mahmoud A. S., 2001, A hybrid fuzzy-goal programming approach to multiple objective decision making problems. Fuzzy Sets and Systems, 119(1), pp. 71-85.
118. Wang, J., Jia, J. and Takahshi, K., 2005, A study on the impact of uncertain factors on information distortion in supply chains. Production Planning & Control, 16(1), pp. 2-11.
119. Wang, R. C. and Liang, T. F., 2004, Application of fuzzy multi-objective linear
programming to aggregate production planning. Computers & Industrial Engineering, 46, pp. 17–41.
120. Wiecek, M., Chen, W. and Zhang, J., 2001, Piecewise quadratic approximation of the nondominated set for bicriteria programs. Journal of Multicriteria Decision Analysis, 10, pp. 35–47.
121. Wong, M. C. and Cheung, Y., 1999, The practice of investment management in Hong Kong: market forecasting and stock selection. The International Journal of Management Science, 27, pp. 451-465.
122. Yang, B. and Burns N. D., 2003, Implications of postponement for the supply chain. International Journal of Production Research, 41(9), pp. 2075–2090.
123. Yang, B., Burns, N. D. and Backhouse C. J., 2004, Management of uncertainty through postponement. International Journal of Production Research, 42, pp. 1049-1064.
124. Yang, J. B. and Xu, D. L., 2002, Nonlinear information aggregation via evidential reasoning in multi-attribute decision analysis under uncertainty. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans, 32(3), pp. 376-93.
125. Yang, P. C. and Wee, H. M., 2003, An integrated multi-lot-size production inventory model for deteriorating item. Computers & Operations Research, 30, pp. 671-682.
126. Zadeh, L. A., 1978, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, pp. 3-28.
127. Zhao, H, Icoz, T., Jaluria, Y. and Knight, D., 2007, Application of data-driven design optimization methodology to a multi-objective design optimization problem.Journal of Engineering Design, 18(4), pp. 343- 359.
128. Zhou, D., Ma, J., Turban, E. and Bolloju, N., 2002, A Fuzzy set approach to the evalution of journal grades. Fuzzy Sets and Systems, 131, pp. 63-74.
129. Zhou, Z., Cheng, S., and Hua, B., 2000, Supply chain optimization of continuous process industries with sustainability considerations. Computers and Chemical Engineering, 24, pp. 1151-1158.
130. Zimmermann, H. J., 1978, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), pp. 45-56.
131. Zsidisin, G. A., 2003, A grounded definition of supply risk. Journal of Purchasing & Supply Management, 9(1), pp. 217- 224.