研究生: |
吳威霖 Wu, Wei-Ling |
---|---|
論文名稱: |
設計與合成高熱穩定性三蝶烯衍生物之電子傳輸材料應用於有機發光二極體 Design and Synthesis of Triptycene-based Electron-Transporting Materials with High Thermal Stability for Organic Light-Emitting Diodes |
指導教授: |
周鶴修
Chou, Ho-Hsiu |
口試委員: |
李文亞
Lee, Wen-Ya 衛子健 Wei, Tzu-Chien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 190 |
中文關鍵詞: | 有機發光二極體 、電子傳輸材料 、高熱穩定性 、激發錯合體 |
外文關鍵詞: | Organic Light Emitting Diodes, Electron transport materials, High thermal stability, Exciplex |
相關次數: | 點閱:97 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文中,我們合成出一系列三蝶烯衍生物含吡啶的電子傳輸材料,TPP及TPDP,由於目前市面上所使用的電子傳輸材料普遍還存在著兩個重大的缺點,熱穩定性以及三重態能階不夠高,而以三蝶烯當作主體結構可以同時解決這兩個問題,使得TPP及TPDP皆有著滿高的單重態與三重態能階,但由於TPDP昇華時因堆疊而導致昇華溫度提高而接近裂解溫度,而無法順利製成薄膜,所以之後只將TPP應用在高熱穩定性的藍色與綠色熱活性延遲螢光元件以及綠色磷光元件上,而在高熱穩定性綠色磷光元件以及綠色熱活性螢光的三層元件上均有著不錯的效果。在高熱穩定性綠色磷光元件上,跟目前市面上熱門的電子傳輸材料TmPyPB相比,此材料可得到較高的外部量子效率,且擁有較好的元件穩定性,可使元件在高電壓環境下操作保持一定效率。
在第三章節,由於熱活性延遲螢光(Thermally activated delayed fluorescence, TADF)可以和磷光有機發光二極體一樣達到內部量子效率100 %卻不需引入重金屬原子,可以降低汙染及成本,所以在OLED的應用上佔有相當重要的地位,但在結構的設計上還是有很大的挑戰,所以現今大家把電子傳輸材料與電洞傳輸材料共混形成激發錯合體(Exciplex)使用分子間的電荷傳輸達到TADF的效果。形成激發錯合體需要載子傳輸的平衡及較高的三重態能隙,因此我們設計與合成一系列三蝶烯衍生物之TPP、TPDP與TPSP來當作電子傳輸材料,其合成步驟為將三蝶烯與不同電子受體鍵結,並搭配同為三蝶烯為主結構的電洞傳輸材料TATP與TMATP來探討是否具有相似TADF的激發錯合體現象。由於三蝶烯具有較為剛性之結構,以致於所有材料皆具有良好的熱穩定性,另外三蝶烯的三級碳可以阻斷共軛鍊而使其具有較高的能隙,可應用於藍色有機發光二極體,而在元件製程部分,我們將電子與電洞傳輸材料以1 : 1比例共蒸鍍製作成雙層元件,但結果可推斷,三蝶烯的立體結構使得分子間不易發生電荷轉移,所以不易產生激發錯合體。
Abstract
In the thesis, we have synthesized a series of triptycene derivatives containing pyridine group electron transport materials, TPP and TPDP. Due to the existence of two major disadvantages, thermal stability and triplet energy level are not high enough, and the use of triptycene as the main structure can solve both problems at the same time, so that both TPP and TPDP have large singlet and triplet energy levels, but due to stacking cause TPDP sublimation temperature increases and approaches the cracking temperature, and can not be made a film. Therefore, only the TPP is applied to the high thermal stability blue and green TADF and the green ph-OLED, while the high thermal stability green ph-OLED is used. And the green TADF three-layer device have a good efficiency. Compared with TmPyPB, a popular electron transport material currently available on the market, this material can obtain higher external quantum efficiency and better component stability, allowing components to be in a high voltage environment. The operation maintains a certain efficiency.
Thermally activated delayed fluorescence (TADF) can achieve 100% internal quantum yield as phosphorus light-emitting diode but without the heavy metals. With this advantage, TADF is more environment-friendly and easily processable so that it is an important discovery in the aspect of organic light-emitting diode. However, it is still a challenge in the design of the molecular structure. To date, the blend of electron and hole transporting material forms the Exciplex which transport charges intermolecularly to achieve TADF. To generate exciplex, the balance of charge transporting and high triplet state is the key factor. Herein, we
synthesize a series of triptycene derivatives TPP, TPDP, and TPSP as the electron transporting materials. The backbone of the triptycene derivative is bonded covalently with different units of the electron acceptor. On the other hand, the hole transporting materials, TATP and TMATP, with the same triptycene backbone are also synthesized to investigate the exciplex phenomenon in blends of transporting materials. Due to the rigid structure of triptycene, all materials with the triptycene backbone reveal great thermal stability. Moreover, the tertiary carbon structure in triptycene can break the conjugation then lead to the high energy gap, which can be applied in the blue organic light-emitting diode. In the fabrication of exciplex double layer device, electron and hole transporting materials are thermally evaporated in the portion of 1:1 on the substract. However, it can be inferred that the stereostructure of triptycene makes charge transfer difficult between molecules, so that it is difficult to generate expiclex.
參考文獻:
[1]S. T. Kim, In the 6th Interantional Meeting on Information Display and IMID/IDMC2006 Daegu, Korea,2006.
[2]G. G. P. E. Burrows, V. Bulovi´c, Z. Shen, S. R. Forrest, and M. E. Thompson, IEEE Trans. Electron Device 1997, 44, 11888.
[3]M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042.
[4]C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
[5]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 348, 352.
[6]C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics 1989, 65, 3610.
[7]T. Főrster, Discuss. Faraday Soc. 1959, 27, 7.
[8]D. L. Dexter, The Journal of Chemical Physics 1953, 21, 836.
[9]B. D. Chin, M. C. Suh, M.-H. Kim, S. T. Lee, H. D. Kim, H. K. Chung, Applied Physics Letters 2005, 86.
[10]N. J. Turro, Modern molecular photochemistry, University science books, 1991.
[11]C. Adachi, H. Nakanotani, Matrial Matters 2009, 4.3, 74.
[12]S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, S. T. Tan, H. V. Demir, X. W. Sun, Applied Physics Letters 2013, 102.
[13]M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Physical Review B 1999, 60, 14422.
[14]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[15]D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Applied Physics Letters 1999, 74, 442.
[16]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Applied Physics Letters 2001, 79, 2082.
[17]Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv Mater 2014, 26, 7931.
[18]P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y. Yen, I. C. Chen, C. H. Cheng, Chem Commun (Camb) 2014, 50, 6869.
[19]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[20]Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nature Photonics 2014, 8, 326.
[21]K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi, Journal of the American Chemical Society 1996, 118, 11974.
[22]H. Antoniadis, M. A. Abkowitz, B. R. Hsieh, Applied Physics Letters 1994, 65, 2030.
[23]J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Applied Physics Letters 2008, 93, 123306.
[24]T. Yasuda, Y. Yamaguchi, D.-C. Zou, T. Tsutsui, Japanese Journal of Applied Physics 2002, 41, 5626.
[25]Y. Tao, C. Yang, J. Qin, Chemical Society Reviews 2011, 40, 2943.
[26]W.-Y. Hung, T.-H. Ke, Y.-T. Lin, C.-C. Wu, T.-H. Hung, T.-C. Chao, K.-T. Wong, C.-I. Wu, Applied Physics Letters 2006, 88, 064102.
[27]M. E. Kondakova, T. D. Pawlik, R. H. Young, D. J. Giesen, D. Y. Kondakov, C. T. Brown, J. C. Deaton, J. R. Lenhard, K. P. Klubek, Journal of Applied Physics 2008, 104, 094501.
[28]M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. c. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, C. I. Wu, Advanced Materials 2006, 18, 1216.
[29]H.-I. Baek, C. Lee, Journal of Applied Physics 2008, 103, 054510.
[30]C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
[31]K. A. Higginson, X.-M. Zhang, F. Papadimitrakopoulos, Chemistry of Materials 1998, 10, 1017.
[32]D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido, Chemistry Letters 2007, 36, 262.
[33]N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue, F. So, ACS Applied Materials & Interfaces 2009, 1, 1169.
[34]S.-J. Su, T. Chiba, T. Takeda, J. Kido, Advanced Materials 2008, 20, 2125.
[35]H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y.-J. Pu, K.-i. Nakayama, M. Yokoyama, J. Kido, Advanced Functional Materials 2011, 21, 336.
[36]D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, J. Kido, Advanced Functional Materials 2011, 21, 1375.
[37]H.-W. Lin, C.-W. Lu, L.-Y. Lin, Y.-H. Chen, W.-C. Lin, K.-T. Wong, F. Lin, J. Mater. Chem. A 2013, 1, 1770.
[38]H.-H. Chou, H.-H. Shih, C.-H. Cheng, J. Mater. Chem. 2010, 20, 798.
[39]D. Chen, S.-J. Su, Y. Cao, J. Mater. Chem. C 2014, 2, 9565.
[40]P. N. Murgatroyd, Journal of Physics D: Applied Physics 1970, 3, 151.
[41]T. Ogawa, D.-C. Cho, K. Kaneko, T. Mori, T. Mizutani, Thin Solid Films 2003, 438-439, 171.
[42]P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin, C. H. Cheng, Journal of the American Chemical Society 2017, 139, 10948.
[43]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[44]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Applied Physics Letters 1999, 75, 4.
[45]Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv Mater 2014, 26, 7931.
[46]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[47]Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chemistry of Materials 2017, 29, 1946.
[48]Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem Soc Rev 2017, 46, 915.
[49]D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S.-H. Hwang, J. Y. Lee, ACS Applied Materials & Interfaces 2015, 7, 9625.
[50]T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C. C. Wu, Adv Mater 2016, 28, 6976.
[51]H. Nakanotani, K. Masui, J. Nishide, T. Shibata, C. Adachi, Scientific Reports 2013, 3, 2127.
[52]D. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Materials Horizons 2016, 3, 145.
[53]D. P.-K. Tsang, T. Matsushima, C. Adachi, Scientific Reports 2016, 6, 22463.
[54]K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nature Photonics 2012, 6, 253.
[55]K. Goushi, C. Adachi, Applied Physics Letters 2012, 101.
[56]L. Zhang, C. Cai, K. F. Li, H. L. Tam, K. L. Chan, K. W. Cheah, ACS Appl Mater Interfaces 2015, 7, 24983.
[57]W. Y. Hung, P. Y. Chiang, S. W. Lin, W. C. Tang, Y. T. Chen, S. H. Liu, P. T. Chou, Y. T. Hung, K. T. Wong, ACS Appl Mater Interfaces 2016, 8, 4811.
[58]W. Y. Hung, T. C. Wang, P. Y. Chiang, B. J. Peng, K. T. Wong, ACS Appl Mater Interfaces 2017, 9, 7355.
[59]T.-C. Lin, M. Sarma, Y.-T. Chen, S.-H. Liu, K.-T. Lin, P.-Y. Chiang, W.-T. Chuang, Y.-C. Liu, H.-F. Hsu, W.-Y. Hung, W.-C. Tang, K.-T. Wong, P.-T. Chou, Nature Communications 2018, 9, 3111.
[60]M. Sarma, K. T. Wong, ACS Appl Mater Interfaces 2018, 10, 19279.
[61]Y. Tao, C. Yang, J. Qin, Chem Soc Rev 2011, 40, 2943.
[62]H.-H. Chou, H.-H. Shih, C.-H. Cheng, J. Mater. Chem. 2010, 20, 798.
[63]A. C. Brown, J. Gibson, Journal of the Chemical Society, Transactions 1892, 61, 367.